Andrea C. Ferrari

Andrea C. Ferrari earned a PhD in electrical engineering from the University of Cambridge after obtaining a Laurea in nuclear engineering at Polytechnic University of Milan, in Italy. He was also awarded an ScD (Doctor of Science) from the University of Cambridge. He is the Founder and Director of the Cambridge Graphene Centre at the University of Cambridge,[1] and the EPSRC Doctoral Training Centre in Graphene Technology.[2] Prof. Ferrari is the Science and Technology Officer[3] and the Chair of the Management Panel of the Graphene Flagship,[4] one of the biggest research initiatives ever funded by the European Commission.[5]

Awards

Ferrari is a Fellow of the American Physical Society, the Institute of Physics, the Materials Research Society, the Optical Society, the European Academy of Sciences and the Royal Society of Chemistry. Among others, he has received the following awards:[1]

Ferrari has also received 4 European Research Council grants.[6]

Research

Ferrari is a leading researcher in graphene and related materials, having pioneered bulk production,[7] [8] [9] mass scale identification by optical [10] and spectroscopic means, [11] [12] [13] implementation in composites, [14] printed and flexible electronics, [15] lasers, [16] modulators, [17] detectors, [18] and many others. He also gave seminal contributions to the growth, characterization and modelling of diamond and diamond-like carbon, [19] amorphous, disordered and nanostructured carbons, [20] carbon nanotubes, [21] and nanowires. [22] He investigated their applications for coating, optoelectronics and sensing. [23]He worked on non-linear optical properties of carbon nanotubes for photonic devices,[24] and on layered materials for single photon emission and quantum technology applications. [25]

References

  1. "Andrea C. Ferrari". Retrieved 19 April 2019.
  2. "EPSRC Centre for Doctoral Training in Graphene Technology". Retrieved 19 April 2019.
  3. "Director and management". Retrieved 19 April 2019.
  4. "Management Panel". Retrieved 19 April 2019.
  5. Johnson, Dexter. "Europe Invests €1 Billion to Become "Graphene Valley"". Retrieved 19 April 2019.
  6. "ERC FUNDED PROJECTS". Retrieved 19 April 2019.
  7. Hernandez Y, Nicolosi V, Lotya M, Blighe F, Sun Z, De S, McGovern IT, Holland B, Byrne M, Gunko Y, Boland J, Niraj P, Duesberg G, Krishnamurti S, Goodhue R, Hutchison J, Scardaci V, Ferrari AC, Coleman JN (2008). "High yield production of graphene by liquid phase exfoliation of graphite". Nature Nanotechnology. 3 (9): 563–568. arXiv:0805.2850. Bibcode:2008NatNa...3..563H. doi:10.1038/nnano.2008.215. PMID 18772919. Retrieved 11 November 2020.
  8. Bonaccorso F, Lombardo A, Hasan T, Sun Z, Colombo L, Ferrari AC (2012). "Production and processing of graphene and 2d crystals". Materials Today. 15 (12): 564–589. doi:10.1016/S1369-7021(13)70014-2. Retrieved 11 November 2020.
  9. Backes C, et al. (2020). "Production and processing of graphene and related materials". 2D Materials. 7 (2): 022001. Bibcode:2020TDM.....7b2001B. doi:10.1088/2053-1583/ab1e0a. Retrieved 11 November 2020.
  10. Casiraghi C, Hartschuh A, Lidorikis E, Qian H, Harutyunyan H, Gokus T, Novoselov KS, Ferrari AC (2007). "Rayleigh Imaging of Graphene and Graphene Layers". Nano Letters. 7 (9): 2711–2717. arXiv:0705.2645. Bibcode:2007NanoL...7.2711C. doi:10.1021/nl071168m. PMID 17713959. Retrieved 11 November 2020.
  11. Ferrari AC, Robertson J (2000). "Interpretation of Raman Spectra of disordered and amorphous carbon". Physical Review B. 61 (20): 14095–14107. Bibcode:2000PhRvB..6114095F. doi:10.1103/PhysRevB.61.14095. Retrieved 11 November 2020.
  12. Casiraghi C, Ferrari AC, Robertson J (2005). "Raman spectroscopy of hydrogenated amorphous carbon". Physical Review B. 72 (8): 085401. Bibcode:2005PhRvB..72h5401C. doi:10.1103/PhysRevB.72.085401. Retrieved 11 November 2020.
  13. Ferrari AC, Robertson J (2001). "Resonant Raman spectroscopy of disordered, amorphous and diamond-like carbon". Physical Review B. 64 (7): 075414. Bibcode:2001PhRvB..64g5414F. doi:10.1103/PhysRevB.64.075414. Retrieved 11 November 2020.
  14. Karagiannidis PG, Hodge SA, Lombardi L, Tomarchio F, Decorde N, Milana S, Goykhman I, Su Y, Mesite SV, Johnstone DN, Leary RK, Midgley PA, Pugno NM, Torrisi F, Ferrari AC (2017). "Microfluidization of graphite and formulation of graphene-based conductive inks". ACS Nano. 11 (3): 2742–2755. doi:10.1021/acsnano.6b07735. PMC 5371927. PMID 28102670. Retrieved 11 November 2020.
  15. Ferrari AC, et al. (2015). "Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems". Nanoscale. 7 (11): 4598–4810. Bibcode:2015Nanos...7.4598F. doi:10.1039/C4NR01600A. PMID 25707682. Retrieved 11 November 2020.
  16. Sun Z, Hasan T, Torrisi T, Popa D, Privitera G, Wang F, Bonaccorso F, Basko DM, Ferrari AC (2010). "Graphene Mode-Locked Ultrafast Laser". ACS Nano. 4 (2): 803–810. arXiv:0909.0457. doi:10.1021/nn901703e. PMID 20099874. Retrieved 11 November 2020.
  17. Bonaccorso F, Sun Z, Hasan T, Ferrari AC (2010). "Graphene Photonics and Optoelectronics". Nature Photonics. 4 (9): 611–622. arXiv:1006.4854. Bibcode:2010NaPho...4..611B. doi:10.1038/nphoton.2010.186. S2CID 15426689. Retrieved 11 November 2020.
  18. Echtermeyer J, Britnell L, Jasnos PK, Lombardo A, Gorbachev RV, Grigorenko AN, Geim AK, Ferrari AC, Novoselov KS (2011). "Strong plasmonic enhancement of photovoltage in graphene". Nature Communications. 2: 458. arXiv:1107.4176. Bibcode:2011NatCo...2..458E. doi:10.1038/ncomms1464. PMID 21878912. Retrieved 11 November 2020.
  19. Ferrari AC (2004). "Diamond-like Carbon for magnetic storage disks". Surface and Coatings Technology. 180: 190–206. doi:10.1016/j.surfcoat.2003.10.146. Retrieved 11 November 2020.
  20. Ferrari AC, Rodil SE, Robertson J (2003). "Interpretation of infrared and Raman spectra of amorphous carbon nitrides". Physical Review B. 67 (15): 155306. Bibcode:2003PhRvB..67o5306F. doi:10.1103/PhysRevB.67.155306. Retrieved 11 November 2020.
  21. Lazzeri M, Piscanec S, Mauri F, Ferrari AC, Robertson J (2005). "Electron transport and hot phonons in carbon nanotubes". Physical Review Letters. 95 (23): 236802. arXiv:cond-mat/0503278. Bibcode:2005PhRvL..95w6802L. doi:10.1103/PhysRevLett.95.236802. PMID 16384327. Retrieved 11 November 2020.
  22. Piscanec S, Cantoro M, Ferrari AC, Hofmann S, Zapien JA, Lifshitz Y, Lee ST, Robertson J (2003). "Raman spectroscopy of silicon nanowires". Physical Review B. 68 (24): 241312. Bibcode:2003PhRvB..68x1312P. doi:10.1103/PhysRevB.68.241312. Retrieved 11 November 2020.
  23. Casiraghi C, Robertson J, Ferrari AC (2007). "Diamond-like carbon for data and beer storage". Materials Today. 10 (1–2): 44–53. doi:10.1016/S1369-7021(06)71791-6. Retrieved 11 November 2020.
  24. Wang F, Rozhin AG, Scardaci V, Sun Z, Hennrich F, White IH, Milne WI, Ferrari AC (2008). "Wideband-tuneable, nanotubemode-locked, fibre laser". Nature Nanotechnology. 3 (12): 738–742. Bibcode:2008NatNa...3..738W. doi:10.1038/nnano.2008.312. PMID 19057594. Retrieved 11 November 2020.
  25. Palacios-Berraquero C, Barbone M, Kara DM, Chen X, Goykhman I, Yoon D, Ott AK, Beitner J, Watanabe K, Taniguchi T, Ferrari AC, Atatüre M (2016). "Atomically thin quantum light-emitting diodes". Nature Communications. 7: 12978. arXiv:1603.08795. Bibcode:2016NatCo...712978P. doi:10.1038/ncomms12978. PMID 27667022. Retrieved 11 November 2020.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.