Andrew D. Huberman
Andrew D. Huberman (born in 1975 in Palo Alto, California) is an American neuroscientist and tenured professor in the Department of Neurobiology at the Stanford University School of Medicine. He has made numerous important contributions to the fields of brain development, brain plasticity, and neural regeneration and repair. A large amount of that work focused on the visual system, including the mechanisms that control light-mediated activation of the circadian and autonomic arousal centers in the brain, as well as the brain control over conscious vision or sight.
Huberman was awarded the McKnight Foundation Neuroscience Scholar Award (2013), and a Biomedical Scholar Award from the Pew Charitable Trusts. He is the recipient of the 2017 ARVO Cogan Award for making major contributions to the fields of vision science and efforts to regenerate the visual system and cure blindness.
He is currently or has served on as an elected member of The National Institutes of Health Grants Advisory Panel "Sensory, Perceptual, and Cognitive Processes", and the Editorial Boards for Current Biology,[1] The Journal of Neuroscience, The Journal of Comparative Neurology, Current Opinion in Neurobiology, Cell Reports, and Neural Development. He is a member of Faculty 1000.
Graduate/Postdoctoral Research
From 1998–2000, Huberman worked in the laboratory of Irving Zucker and with Marc Breedlove, at University of California, Berkeley, as part of a team that defined how early androgen exposure impacts development,[2] and he performed the first experiments defining the structure of binocular visual pathways that set the circadian clock in the hypothalamus.[3] From 2000-2004, working as a Ph.D. student in the laboratory of Barbara Chapman at the Center for Neuroscience at the University of California, Davis, he discovered that neural activity and axon guidance molecules work in concert to ensure proper wiring of binocular maps in the brain.[4][5][6] Huberman was a Helen Hay Whitney Postdoctoral Fellow researcher in the laboratory of Ben A. Barres from 2005-2010.
Huberman Lab
Research
Dr. Huberman was an Assistant Professor of Neurobiology and Neuroscience at University of California, San Diego from 2011–2015, where his group pioneered the use of genetic tools for the study of the visual system function, development and disease.[7][8][9][10][11][12] Among the Huberman Lab's discoveries was the finding that specific types of retinal neurons degenerate early in Glaucoma[13] a common blinding disease that depletes sight in > 70 million people worldwide and for which there is currently no cure.
After moving to Stanford in 2016, Huberman discovered and published[14] the use of non-invasive methods such as visual stimulation can enhance regeneration of damaged retinal neurons, leading to partial recovery from blindness, especially when the stimulation is paired with specific forms of gene therapy. The work was covered extensively in the popular press, including TIME Magazine and Scientific American and is part of the National Eye Institute’s Audacious Goals Initiative to restore vision to the blind. The Huberman Lab extended those findings to develop a human clinical trial using virtual reality technology to stimulate regeneration and plasticity of damaged retinal and other visual system neurons.
In 2017, the Huberman Lab created a state-of-the-art virtual reality platform for probing the neural mechanisms underlying pathologic fear and anxiety. That work involved collecting 360-degree video of common fear inducing scenarios such as heights and claustrophobia as well as atypical fear inducing situations such as swimming with Great White Sharks. The Huberman VR platform is aimed at making discoveries that hopefully will lead to developing new tools for humans to adjust their state in order to promote adaptive coping with stress.
In May, 2018, Huberman Laboratory published an article[15] in the journal Nature reporting their discovery of two new mammalian brain circuits: one that promotes fear and paralysis, and another that promotes “courageous”/confrontational reaction, to visually-evoked threats. That discovery prompted the now ongoing exploration of how these brain regions may be involved in humans suffering from anxiety-related disorders such as phobias and generalized anxiety.
In 2020, Huberman Lab initiated a collaboration with the laboratory of Dr. David Spiegel, M.D. in the Stanford Department of Psychiatry, to systematically study how particular patterns of respiration (i.e., breathing/breathwork) and the visual system influence the Autonomic Nervous System, stress, and other brain states, including sleep.
Public Education
Starting in 2019, Dr. Huberman initiated a series of short, daily Neuroscience Education posts to Instagram, in order to share exciting discoveries in the field as they relate to human health, development, and disease.
Dr. Huberman has been a guest on numerous podcasts discussing neuroscience including The Lex Fridman Podcast, The Rich Roll Podcast and The Joe Rogan Experience.
In January 2021, Dr. Huberman launched The Huberman Lab Podcast to further expand zero-cost-to-consumer science education.
Honors and awards
List of Publications
Due to the abundance of articles Huberman published, this section is still in progress.
Year | Title | Publication | Author(s) | Volume/Issue Citation |
---|---|---|---|---|
2021 | Human Responses to Visually Evoked Threat | Current Biology | Melis Yilmaz Balban, Erin Cafaro, Lauren Saue-Fletcher, ...,
A. Moses Lee, Edward F. Chang, Andrew D. Huberman |
31: 1–12 |
2020 | Sight Restored By Turning Back the Epigenetic Clock | Nature | Huberman AD | 588: 34-36 |
2020 | Neurotoxic reactive astrocytes drive neuronal death following retinal injury. | Cell Reports | Huberman AD, Liddelow SAGuttenplan KA, Stafford BA, El-Danaf R, Adler D, Münch AM, Weigel M | 31: 107776. |
2020 | A chromatic retinal circuit encodes sunrise and sunset for the brain. | Current Biology | Rivera A, Huberman AD | 30: R316-318. |
2019 | Sub-topographic maps for regionally enhanced analysis of visual space in the mouse retina. | The Journal of Comparative Neurology | El-Danaf RN, Huberman AD | 527: 259-269. doi: 10.1002/cne.24457 |
2019 | Molecular fingerprinting of On-Off direction selective retinal ganglion cells across species and relevance to primate visual circuits. | Journal of Neuroscience | Dhande OS, StaffordBK, Franke K, El-Danaf, Percival KA, Phan AH, LiP, Hansen BJ, Nguyen PL, Berens P, Taylor WR, Callaway E, Euler T, Huberman AD | 39: 78- 95. |
2019 | Creating Fears: It’s all in your line of sight. | Current Biology | Yilmaz M, Huberman AD | 29: R1232-1234. |
2018 | Synaptic convergence patterns onto retinal ganglion cells are preserved despite topographic variation in pre- and postsynaptic territories. | Cell Reports | Yu WQ, El-Danaf RN, Okawa H, Pacholec JM, Matti U, Schwarz K, Odermatt B, Dunn FA, Lagnado L, Schmitz F, Huberman AD, Wong ROL | 25: 2017-2026. |
2018 | A midline thalamic circuit determines reactions to visual threat. | Nature | Salay LD, Ishiko N, Huberman AD | 557: 183-189. |
2018 | A comprehensive, unbiased view of neural networks: more than meets the eye. | Neuron | Jung H-Y, Huberman AD | 100: 1019-1021. |
2018 | Assembly and repair of eye-to-brain connections. | Current Opinion in Neurobiology | Varadajaran S, Huberman AD | 53: 198-209. |
2017 | Strict independence of parallel and poly-synaptic axon-target matching during visual reflex circuit assembly. | Cell Reports | Seabrook TA, Dhande OS, Ishiko N, Wooley VP, Nguyen PL, Huberman AD | 21: 3049- 3064 |
2017 | Uniformity from diversity: vast-range light sensing in an individual neuron type. | Cell | Varadajaran S, Huberman AD | 171: 738-740. |
2017 | Architecture, function and assembly of the mouse visual system. | Annual Review of Neuroscience | Seabrook TA*, Burbridge TJ*, Crair MC, Huberman AD | 40: 499-538. |
2017 | Regenerating optic pathways from the eye to the brain. | Science | Laha B, Stafford BK, Huberman AD | 356: 1031–1034. |
2017 | Signal integration in thalamus: labeled lines go cross-eyed and blurry. | Neuron | Stafford BK, Huberman AD | 93: 717-720. |
2016 | Cortico-fugal output from visual cortex promotes plasticity of innate motor behavior. | Nature | Liu BH, Huberman AD, Scanziani M | 538: 383-387. |
2016 | Neural activity promotes long distance, target-specific regeneration of adult retinal axons. | Nature Neuroscience | Lim J-H, Nguyen PL, Lien BV, Wang C, Zukor K, He Z, Huberman AD | 19: 1073-84 |
2016 | Life goes by: a visual circuit for signaling perceptual- motor mismatch: | Nature Neuroscience | Ishiko N, Huberman AD | 19: 177-9. |
2015 | Cell type-specific manipulation with GFP-dependent Cre recombinase. | Nature Neuroscience | JT Chung Yiu, Rudolph S, Dhande OS, Lapan S, Drokhlyansky E, Huberman AD, Regehr W, Cepko C | 18: 1334-41. |
2015 | Contactin-4 mediates axon-target specificity and functional development of the accessory optic system. | Neuron | Osterhout JA, Stafford BS, Nguyen PL, Yoshihara Y, Huberman AD | 86: 985-99. |
2015 | Functional Assembly of accessory optic system circuitry critical for compensatory eye movements. | Neuron | Sun LO, Brady CM, Cahill H, Sakuta H, Dhande OS, Noda M, Huberman AD, Nathans J, Kolodkin AL | 86: 971-84 |
2015 | Characteristic patterns of dendritic remodeling in early-stage glaucoma: evidence from genetically identified retinal ganglion cell types. | Journal of Neuroscience | El-Danaf RN, Huberman AD | 35: 2329-2343. |
2015 | Assassins of eyesight. | Nature | Huberman AD, El-Danaf RN | 527: 456-457. |
2015 | Retinal and subcortical contributions to visual feature selectivity. | Annual Review of Vision Science | Dhande OS, Stafford BS, Lim A, Huberman AD | 1: 291-328. |
2015 | When visual circuits collide: motion processing in the brain. | Cell | Salay LD, Huberman AD | 162: 241-243. |
2015 | Cortical cliques: a few plastic neurons get all the action. | Neuron | Seabrook TA, Huberman AD | 86: 1113-6. |
2014 | Birthdate and outgrowth timing predict cellular mechanisms of axon-target matching in the developing visual pathway. | Cell Reports | Osterhout JA, El-Danaf RN, Nguyen PL, Huberman AD | 8: 1006-1017 |
2014 | A dedicated circuit links direction selective retinal ganglion cells to primary visual cortex. | Nature | A, Huberman AD | 507: 358-361. |
2014 | So many pieces, one puzzle: cell type specification and visual circuitry in flies and mice. | Genes and Development | Wernet MF, Huberman AD, Desplan C | 28: 2565-2584. |
2014 | Visual Circuits: mouse retina no longer a level playing field. | Current Biology | Dhande OS, Huberman AD | 24: R155-6. |
2014 | Retinal ganglion cell maps in the brain: implications for visual processing. | Current Opinion in Neurobiology | Dhande OS, Huberman AD | 24: 133-142. |
2013 | Genetic dissection of a retinal output circuit for image stabilization. | Journal of Neuroscience | Dhande OS*, Estevez M*, El-Danaf RN, Nguyen PL, Quatrocci L, Berson DM, Huberman AD | 33: 17797-813 |
2013 | Diverse visual features encoded in mouse lateral geniculate nucleus. | Journal of Neuroscience | Piscopo DM, El-Danaf RN, Huberman AD*, Niell CM* | 33: 4642-4656. |
2013 | Trans-synaptic tracing with vesicular stomatitis virus reveals novel retinal circuitry. | Journal of Neuroscience | Beier K, El-Danaf RN, Huberman AD, Demb J, Cepko CL | 33: 35-51. |
2012 | Wiring visual circuits, one eye at a time. | Nature Neuroscience | El-Danaf RN, Huberman AD | 15: 1-2. |
2012 | Visual Cognition: rats compare shapes among the crowd. | Current Biology | Cruz-Martin A, Huberman AD | 22: R18-20. |
2011 | Cadherin-6 mediates axon-target matching in a non-image-forming visual circuit. | Neuron | Osterhout JA, Josten NJ, Yamada J, Pan F, Wu S-W, Nguyen PL, Panagiotakos G, Inoue YU, Egusa SF, Volgyi B, Inoue T, Bloomfield S, Barres BA, Berson DM, Feldheim DA*, Huberman AD* | 71: 632-639. |
2011 | Pathway-specific genetic attenuation of glutamate release alters select features of competition-based visual circuit refinement. | Neuron | Koch SM, Dela Cruz CG, Hnasko TS, Edwards RH, Huberman AD, Ullian EM | 71: 1-8. |
2011 | Transgenic mice reveal unexpected diversity of on-off direction selective retinal ganglion cell subtypes and brain structures involved in motion processing. | Journal of Neuroscience | Rivlin-Etzion M, Zhou K, Wei W, Elstrott J, Nguyen PL, Barres BA, Huberman AD*, Feller MB* | 31: 8760-9. |
2011 | The down syndrome critical region regulates retinogeniculate refinement. | Journal of Neuroscience | Blank M, Fuerst PG, Stevens B, Nouri N, Kirkby L, Warrier D, Barres BA, Feller MB, Huberman AD, Burgess RW, Garner CG | 31: 5764-5776. |
2011 | What can mice tell us about how vision works? | Trends in Neurosciences | Huberman AD, Niell CM | 34: 464-73. |
2010 | Emergence of laminar specific retinal ganglion cell connectivity by axon arbor retraction and synapse elimination. | Journal of Neuroscience | Cheng TW, Liu XB, Faulkner RL, Stephan AH, Barres BA, Huberman AD, Cheng HJ | 30: 16376-16382. |
2010 | Milestones and mechanisms for generating specific synaptic connections between the eyes and the brain. | Current Topics in Developmental Biology | Josten NJ, Huberman AD | 93: 229-59. |
2010 | Molecular and cellular mechanisms of lamina-specific axon targeting. | Cold Spring Harbor Perspectives in Biology | Huberman AD, Clandinin TC, Baier H | 2 (3): a001743. |
2010 | The Developmental Remodeling of Eye‐Specific Afferents in the Ferret Dorsal Lateral Geniculate Nucleus. | The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology | Speer CM, Mikula S, Huberman AD, Chapman B | 293(1):1-24. doi:10.1002/ar.21001 |
2009 | They Won’t Help You Find a Partner, but They’ll Guarantee You Some Personal Space. | Neuron | Huberman AD. Mammalian DSCAMs | 2009;64(4):441-443. doi:10.1016/j.neuron..11.011 |
2009 | Genetic identification of an On-Off direction selective retinal ganglion cell subtype reveals a layer-specific subcortical map of posterior motion. | Neuron | Huberman AD*, Wei W*, Elstrott J*, Stafford BK, Feller MB, Barres BA | 62: 327-334. |
2009 | Gabapentin receptor alpha2delta-1 is a neuronal thrombospondin receptor responsible for excitatory
CNS synaptogenesis. |
Cell | Eroglu C, Allen NJ, Susman MW, O’Rourke NA, Park CY, Oxkan E, Chakraborty C, Mulinyawe SB, Annis DS, Huberman AD, Green EM, Lawler J, Dolmetsch R, Garcia KC, Smith SJ, Luo ZD, Rosenthal A, Mosher DF, Barres BA | 139: 380-92 |
2009 | Mammalian DSCAMs: They won’t help you find a partner, but they’ll guarantee you some personal space. | Neuron | Huberman AD | 64: 441-43. |
2008 | Architecture and activity-mediated refinement of axonal projections from a mosaic of genetically-identified retinal ganglion cells | Neuron | Huberman AD, Manu M, Koch SM, Susman MW, Brosius Lutz A, Ullian EM, Baccus SA, Barres BA | 59: 425-438 |
2008 | Mechanisms underlying development of visual maps and receptive fields. | Annual Review of Neuroscience | Huberman AD, Feller MB, Chapman B | 31: 479-509. |
2007 | The classical complement cascade mediates CNS synapse elimination. | Cell | Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, Nouri N, Micheva KD, Mehalow AK, Huberman AD, Stafford B, Sher A, Litke AM, Lambris JD, Smith SJ, John SW, Barres BA | 131: 1164-78 |
2007 | Mechanisms of eye-specific visual circuit development. | Current Opinion in Neurobiology | Huberman AD | 17: 73-80. |
2006 | Neuronal pentraxins mediate synaptic refinement in the developing visual system. | Journal of Neuroscience | Bjartmar L*, Huberman AD*, Ullian EM*, Reneteria R, Lu X, Xu W, Stellwagen D, Prezioso J, Susman MW, Stokes C, Cho R, Copenhagen D, Worley P, Malenka RC, Ball S, Peachey NS, Chapman B, Nakamoto M, Barres BA, Perin MS | 26: 6269-81. |
2006 | Spontaneous retinal activity mediates development of ocular dominance columns and binocular receptive fields in V1. | Neuron | Huberman AD, Speer CM, Chapman B | 52: 247-5 |
2006 | Dynamics of spontaneous activity in the fetal macaque retina during development of retinogeniculate pathways. | Journal of Neuroscience | Warland DK, Huberman AD, Chalupa LM | 26: 5190-7 |
2006 | Nob mice wave goodbye to eye-specific segregation. | Neuron | Huberman AD | 50: 55-177. |
2006 | Target-derived cues instruct synaptic differentiation. | Journal of Neuroscience | Huberman AD | 26: 1063-1064. |
2005 | Ephrin-As mediate targeting of eye-specific projections to the lateral geniculate nucleus. | Nature Neuroscience | Huberman AD, Murray KD, Warland DK, Feldheim DA, Chapman B | 8: 1013-1021. |
2005 | Early and rapid targeting of eye-specific axonal projections to the lateral geniculate nucleus in the fetal macaque. | Journal of Neuroscience | Huberman AD, Dehay C, Berland M, Chalupa LM, Kennedy H | 25: 4014-4023 |
2003 | Eye-specific retinogeniculate segregation independent of normal neuronal activity. | Science | Huberman AD, Wang GY, Liets LC, Collins OA, Chapman B, Chalupa LM | 300: 994-998. |
2003 | Crossed and uncrossed retinal projections to the hamster circadian system. | Journal of ComparativeNeurology | Muscat L, Huberman AD, Jordan CL, Morin LP | 466: 513- 24. |
2002 | Decoupling eye-specific segregation from lamination in the lateral geniculate nucleus. | Journal of Neuroscience | Huberman AD, Stellwagen D, Chapman B | 22: 9419-29. |
2001 | Finger-length ratios and sexual orientation. | Nature | Williams TJ, Pepitone ME, Christensen SE, Cooke BM, Huberman AD, Breedlove NJ, Breedlove TJ, Jordan CL, Breedlove SM | 404: 455-6. |
2000 | Clozapine does not induce a motor impairment in operant responding for heat reinforcement. | Pharmacology, Biochemistry and Behavior | Huberman A, Turek VF, Carlisle HJ | 67: 307-12. |
References
- http://www.cell.com/current-biology/editorial-board
- Williams, T. J.; Pepitone, M. E.; Christensen, S. E.; Cooke, B. M.; Huberman, A. D.; Breedlove, N. J.; Breedlove, T. J.; Jordan, C. L.; Breedlove, S. M. (2000-03-30). "Finger-length ratios and sexual orientation". Nature. 404 (6777): 455–456. Bibcode:2000Natur.404..455W. doi:10.1038/35006555. ISSN 0028-0836. PMID 10761903. S2CID 205005405.
- Muscat, Louise; Huberman, Andrew D.; Jordan, Cynthia L.; Morin, Lawrence P. (2003-11-24). "Crossed and uncrossed retinal projections to the hamster circadian system". The Journal of Comparative Neurology. 466 (4): 513–524. doi:10.1002/cne.10894. ISSN 1096-9861. PMID 14566946. S2CID 9722540.
- Huberman, Andrew D.; Feller, Marla B.; Chapman, Barbara (2008-01-01). "Mechanisms Underlying Development of Visual Maps and Receptive Fields". Annual Review of Neuroscience. 31 (1): 479–509. doi:10.1146/annurev.neuro.31.060407.125533. PMC 2655105. PMID 18558864.
- Huberman, Andrew D; Murray, Karl D; Warland, David K; Feldheim, David A; Chapman, Barbara (2005). "Ephrin-As mediate targeting of eye-specific projections to the lateral geniculate nucleus". Nature Neuroscience. 8 (8): 1013–1021. doi:10.1038/nn1505. PMC 2652399. PMID 16025110.
- Huberman, Andrew D.; Speer, Colenso M.; Chapman, Barbara (2006-10-19). "Spontaneous retinal activity mediates development of ocular dominance columns and binocular receptive fields in v1". Neuron. 52 (2): 247–254. doi:10.1016/j.neuron.2006.07.028. ISSN 0896-6273. PMC 2647846. PMID 17046688.
- Huberman, Andrew D.; Manu, Mihai; Koch, Selina M.; Susman, Michael W.; Lutz, Amanda Brosius; Ullian, Erik M.; Baccus, Stephen A.; Barres, Ben A. (2008-08-14). "Architecture and activity-mediated refinement of axonal projections from a mosaic of genetically identified retinal ganglion cells". Neuron. 59 (3): 425–438. doi:10.1016/j.neuron.2008.07.018. ISSN 1097-4199. PMID 18701068. S2CID 1519009.
- Huberman, Andrew D.; Wei, Wei; Elstrott, Justin; Stafford, Ben K.; Feller, Marla B.; Barres, Ben A. (2009-05-14). "Genetic identification of an On-Off direction-selective retinal ganglion cell subtype reveals a layer-specific subcortical map of posterior motion". Neuron. 62 (3): 327–334. doi:10.1016/j.neuron.2009.04.014. ISSN 1097-4199. PMC 3140054. PMID 19447089.
- Dhande, Onkar S.; Estevez, Maureen E.; Quattrochi, Lauren E.; El-Danaf, Rana N.; Nguyen, Phong L.; Berson, David M.; Huberman, Andrew D. (2013-11-06). "Genetic dissection of retinal inputs to brainstem nuclei controlling image stabilization". The Journal of Neuroscience. 33 (45): 17797–17813. doi:10.1523/JNEUROSCI.2778-13.2013. ISSN 1529-2401. PMC 3818553. PMID 24198370.
- Osterhout, Jessica A.; Josten, Nicko; Yamada, Jena; Pan, Feng; Wu, Shaw-wen; Nguyen, Phong L.; Panagiotakos, Georgia; Inoue, Yukiko U.; Egusa, Saki F. (2011-08-25). "Cadherin-6 mediates axon-target matching in a non-image-forming visual circuit". Neuron. 71 (4): 632–639. doi:10.1016/j.neuron.2011.07.006. ISSN 1097-4199. PMC 3513360. PMID 21867880.
- Cruz-Martín, Alberto; El-Danaf, Rana N.; Osakada, Fumitaka; Sriram, Balaji; Dhande, Onkar S.; Nguyen, Phong L.; Callaway, Edward M.; Ghosh, Anirvan; Huberman, Andrew D. (2014-03-20). "A dedicated circuit links direction-selective retinal ganglion cells to the primary visual cortex". Nature. 507 (7492): 358–361. Bibcode:2014Natur.507..358C. doi:10.1038/nature12989. ISSN 1476-4687. PMC 4143386. PMID 24572358.
- Osterhout, Jessica A.; Stafford, Benjamin K.; Nguyen, Phong L.; Yoshihara, Yoshihiro; Huberman, Andrew D. (2015-05-20). "Contactin-4 mediates axon-target specificity and functional development of the accessory optic system". Neuron. 86 (4): 985–999. doi:10.1016/j.neuron.2015.04.005. ISSN 1097-4199. PMC 4706364. PMID 25959733.
- El-Danaf, Rana N.; Huberman, Andrew D. (2015-02-11). "Characteristic patterns of dendritic remodeling in early-stage glaucoma: evidence from genetically identified retinal ganglion cell types". The Journal of Neuroscience. 35 (6): 2329–2343. doi:10.1523/JNEUROSCI.1419-14.2015. ISSN 1529-2401. PMC 6605614. PMID 25673829.
- Lim, Jung-Hwan A; Stafford, Benjamin K; Nguyen, Phong L; Lien, Brian V; Wang, Chen; Zukor, Katherine; He, Zhigang; Huberman, Andrew D (2016). "Neural activity promotes long-distance, target-specific regeneration of adult retinal axons". Nature Neuroscience. 19 (8): 1073–1084. doi:10.1038/nn.4340. PMC 5708130. PMID 27399843.
- Salay, Lindsey D.; Ishiko, Nao; Huberman, Andrew D. (2018-05-02). "A midline thalamic circuit determines reactions to visual threat". Nature. 557 (7704): 183–189. Bibcode:2018Natur.557..183S. doi:10.1038/s41586-018-0078-2. ISSN 1476-4687. PMID 29720647. S2CID 13742480.