Barium tungstate

Barium tungstate is an inorganic chemical compound of barium and the tungstate anion.

Barium tungstate
Names
Other names
  • Barium wolframate
  • Tungstate white
  • Wolfram white
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.029.195
EC Number
  • 232-114-3
Properties[1]
BaWO4
Molar mass 385.16 g·mol−1
Appearance white solid
Density 5.04 g·cm−3 (25 °C)
7.26 g·cm−3 (high pressure form)[2]
Melting point 1502 °C[3]
insoluble
Structure[4]
tetragonal
a = 561.4 pm, c = 1271.5 pm
Hazards[1]
GHS pictograms
H302, H332
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references

Synthesis and properties

Barium tungstate can be obtained from the precipitation reaction between barium nitrate and ammonium paratungstate or sodium tungstate.[5][6]

Ba(NO3)2 + Na2WO4 → BaWO4↓ + 2 NaNO3

It is a white solid,[1] which at normal conditions forms tetragonal crystals similar to scheelite, CaWO4. Under pressures above 7 GPa, the compound undergoes transformation to a monoclinic structure similar to fergusonite, YNbO4.[7]

Uses

Barium tungstate can be used as a frequency shifter in laser technology.[8] It has uses in X-ray photography and as a pigment.[4]

References

  1. "MSDS-343137". Sigma-Aldrich. Retrieved 2020-07-10.
  2. Kawada, I.; Kato, K.; Fujita, T. (1974-08-01). "BaWO 4 -II (a high-pressure form)". Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry. 30 (8): 2069–2071. doi:10.1107/S0567740874006431. ISSN 0567-7408.
  3. Ge, W. W.; Zhang, H. J.; Wang, J. Y.; Liu, J. H.; Xu, X. G.; Hu, X. B.; Jiang, M. H.; Ran, D. G.; Sun, S. Q.; Xia, H. R.; Boughton, R. I. (2005). "Thermal and mechanical properties of BaWO4 crystal". Journal of Applied Physics. 98 (1): 013542. doi:10.1063/1.1957125. ISSN 0021-8979.
  4. Perry, Dale L. (2011). Handbook of Inorganic Compounds (2nd ed.). CRC Press. p. 59. ISBN 978-1-4398-1461-1.
  5. Vidya, S.; Solomon, Sam; Thomas, J. K. (2013). "Synthesis, Characterization, and Low Temperature Sintering of Nanostructured BaWO4 for Optical and LTCC Applications". Advances in Condensed Matter Physics. 2013: 1–11. doi:10.1155/2013/409620. ISSN 1687-8108.
  6. Mohamed Jaffer Sadiq, M.; Samson Nesaraj, A. (2015). "Soft chemical synthesis and characterization of BaWO4 nanoparticles for photocatalytic removal of Rhodamine B present in water sample". Journal of Nanostructure in Chemistry. 5 (1): 45–54. doi:10.1007/s40097-014-0133-y. ISSN 2008-9244.
  7. Errandonea, D.; Pellicer-Porres, J.; Manjón, F. J.; Segura, A.; Ferrer-Roca, Ch.; Kumar, R. S.; Tschauner, O.; López-Solano, J.; Rodríguez-Hernández, P.; Radescu, S.; Mujica, A. (2006-06-05). "Determination of the high-pressure crystal structure of BaWO4 and PbWO4". Physical Review B. 73 (22): 224103. arXiv:cond-mat/0602632. doi:10.1103/PhysRevB.73.224103. ISSN 1098-0121. S2CID 55297808.
  8. Colin E., Webb; Jones, Julian D. C. (2004). Handbook of Laser Technology and Applications: Laser Design and Laser Systems. CRC Press. p. 486. ISBN 978-0-7503-0963-9.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.