Bhatia–Davis inequality

In mathematics, the Bhatia–Davis inequality, named after Rajendra Bhatia and Chandler Davis, is an upper bound on the variance σ2 of any bounded probability distribution on the real line.

Suppose a distribution has minimum m, maximum M, and expected value μ. Then the inequality says:

Equality holds precisely if all of the probability is concentrated at the endpoints m and M.

The Bhatia–Davis inequality is stronger than Popoviciu's inequality on variances.

See also

References

    • Bhatia, Rajendra; Davis, Chandler (April 2000). "A Better Bound on the Variance". American Mathematical Monthly. Mathematical Association of America. 107 (4): 353–357. doi:10.2307/2589180. ISSN 0002-9890. JSTOR 2589180.


    This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.