Exposed point

In mathematics, an exposed point of a convex set is a point at which some continuous linear functional attains its strict maximum over . Such a functional is then said to expose . There can be many exposing functionals for . The set of exposed points of is usually denoted .

The two distinguished points are examples of extreme points of a convex set that are not exposed

A stronger notion is that of strongly exposed point of which is an exposed point such that some exposing functional of attains its strong maximum over at , i.e. for each sequence we have the following implication: . The set of all strongly exposed points of is usually denoted .

There are two weaker notions, that of extreme point and that of support point of .


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.