Gelfand–Fuks cohomology
In mathematics, Gelfand–Fuks cohomology, introduced in (Gel'fand & Fuks 1969–70), is a cohomology theory for Lie algebras of smooth vector fields. It differs from the Lie algebra cohomology of Chevalley-Eilenberg in that its cochains are taken to be continuous multilinear alternating forms on the Lie algebra of smooth vector fields where the latter is given the topology.
References
- Gel'fand, I.M.; Fuks, D.B. (1969). "Cohomologies of Lie algebra of tangential vector fields of a smooth manifold". Funct Anal Its Appl. 3: 194–210. doi:10.1007/BF01676621.
- Gel'fand, I.M.; Fuks, D.B. (1970). "Cohomologies of Lie algebra of tangential vector fields. II". Funct Anal Its Appl. 4: 110–6. doi:10.1007/BF01094486.
- Gel'fand, I.M.; Fuks, D.B. (1970). "The cohomology of the Lie algebra of formal vector fields". Mathematics of the USSR-Izvestiya. 2 (2): 327–342. doi:10.1070/im1970v004n02abeh000908.
- Shigeyuki Morita (2001). "§2.4 Gel'fand–Fuks cohomology". Geometry of Characteristic Classes. Translations of Mathematical Monographs. 199. American Mathematical Society. pp. 75–. ISBN 978-0-8218-2139-8.
Further reading
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.