Gomory–Hu tree
In combinatorial optimization, the Gomory–Hu tree[1] of an undirected graph with capacities is a weighted tree that represents the minimum s-t cuts for all s-t pairs in the graph. The Gomory–Hu tree can be constructed in | V | − 1 maximum flow computations.
Definition
Let G = ((VG, EG), c) be an undirected graph with c(u,v) being the capacity of the edge (u,v) respectively.
- Denote the minimum capacity of an s-t cut by λst for each s, t ∈ VG.
- Let T = (VG, ET) be a tree, denote the set of edges in an s-t path by Pst for each s, t ∈ VG.
Then T is said to be a Gomory–Hu tree of G, if for each s, t ∈ VG
- λst = mine∈Pst c(Se, Te),
where
- Se, Te ⊆ VG are the two connected components of T∖{e}, and thus (Se, Te) form an s-t cut in G.
- c(Se, Te) is the capacity of the cut in G.
Algorithm
Gomory–Hu Algorithm
- Input: A weighted undirected graph G = ((VG, EG), c)
- Output: A Gomory–Hu Tree T = (VT, ET).
- 1. Set VT = {VG} and ET = ∅.
- 2. Choose some X∈VT with | X | ≥ 2 if such X exists. Otherwise, go to step 6.
- 3. For each connected component C = (VC, EC) in T∖X. Let SC = ∪vT∈VC vT. Let S = { SC | C is a connected component in T∖X}.
- Contract the components to form G' = ((VG', EG'), c'), where
- VG' = X ∪ S.
- EG' = EG|X×X ∪ {(u, SC) ∈ X×S | (u,v)∈EG for some v∈SC} ∪ {(SC1, SC2) ∈ S×S | (u,v)∈EG for some u∈SC1 and v∈SC2}.
- c' : VG'×VG'→R+ is the capacity function defined as,
- if (u,SC)∈EG|X×S, c'(u,SC) = Σv∈SC:(u,v)∈EGc(u,v),
- if (SC1,SC2)∈EG|S×S, c'(SC1,SC2) = Σ(u,v)∈EG:u∈SC1∧v∈SC2 c(u,v),
- c'(u,v) = c(u,v) otherwise.
- 4. Choose two vertices s, t ∈ X and find a minimum s-t cut (A',B') in G'.
- Set A = (∪SC∈A'∩S SC) ∪ (A' ∩ X) and B = (∪SC∈B'∩S SC) ∪ (B' ∩ X).
- 5. Set VT = (VT∖X) ∪ {A ∩ X, B ∩ X}.
- For each e = (X, Y) ∈ ET do
- If Y ⊂ A, set e' = (A ∩ X, Y), else set e' = (B ∩ X, Y).
- Set ET = (ET∖{e}) ∪ {e'} and w(e') = w(e).
- Set ET = ET ∪ {(A∩X, B∩X)}.
- Set w((A∩X, B∩X)) = c'(A', B').
- Go to step 2.
- 6. Replace each {v} ∈ VT by v and each ({u},{v}) ∈ ET by (u,v). Output T.
Analysis
Using the submodular property of the capacity function c, one has
- c(X) + c(Y) ≥ c(X ∩ Y) + c(X ∪ Y).
Then it can be shown that the minimum s-t cut in G' is also a minimum s-t cut in G for any s, t ∈ X.
To show that for all (P, Q) ∈ ET, w(P,Q) = λpq for some p ∈ P, q ∈ Q throughout the algorithm, one makes use of the following Lemma,
- For any i, j, k in VG, λik ≥ min(λij, λjk).
The Lemma can be used again repeatedly to show that the output T satisfies the properties of a Gomory–Hu Tree.
Example
The following is a simulation of the Gomory–Hu's algorithm, where
- green circles are vertices of T.
- red and blue circles are the vertices in G'.
- grey vertices are the chosen s and t.
- red and blue coloring represents the s-t cut.
- dashed edges are the s-t cut-set.
- A is the set of vertices circled in red and B is the set of vertices circled in blue.
G' | T | |
---|---|---|
| ||
1. | ||
| ||
2. | ||
| ||
3. | ||
| ||
4. | ||
| ||
5. | ||
| ||
6. |
| |
| ||
Implementations: Sequential and Parallel
Gusfield's algorithm can be used to find a Gomory–Hu tree without any vertex contraction in the same running time-complexity, which simplifies the implementation of constructing a Gomory–Hu Tree.[2]
Andrew V. Goldberg and K. Tsioutsiouliklis implemented the Gomory-Hu algorithm and Gusfield algorithm, and performed an experimental evaluation and comparison.[3]
Cohen et al. report results on two parallel implementations of Gusfield's algorithm using OpenMP and MPI, respectively.[4]
Related concepts
In planar graphs, the Gomory–Hu tree is dual to the minimum weight cycle basis, in the sense that the cuts of the Gomory–Hu tree are dual to a collection of cycles in the dual graph that form a minimum-weight cycle basis.[5]
References
- Gomory, R. E.; Hu, T. C. (1961). "Multi-terminal network flows". Journal of the Society for Industrial and Applied Mathematics. 9 (4): 551–570. doi:10.1137/0109047.
- Gusfield, Dan (1990). "Very Simple Methods for All Pairs Network Flow Analysis". SIAM J. Comput. 19 (1): 143–155. doi:10.1137/0219009.
- Goldberg, A. V.; Tsioutsiouliklis, K. (2001). "Cut Tree Algorithms: An Experimental Study". Journal of Algorithms. 38 (1): 51–83. doi:10.1006/jagm.2000.1136.
- Cohen, J.; L. A. Rodrigues; F. Silva; R. Carmo; A. Guedes; E. P. Duarte Jr. (2011). "Parallel Implementations of Gusfield's Cut Tree Algorithm". Lecture Notes in Computer Science (LNCS). 7016. Springer. 7016 (11th International Conference Algorithms and Architectures for Parallel Processing (ICA3PP)): 258–269. doi:10.1007/978-3-642-24650-0_22. ISBN 978-3-642-24649-4. ISSN 0302-9743.
- Hartvigsen, D.; Mardon, R. (1994). "The all-pairs min cut problem and the minimum cycle basis problem on planar graphs". SIAM J. Discrete Math. 7 (3): 403–418. doi:10.1137/S0895480190177042..
- B. H. Korte, Jens Vygen (2008). "8.6 Gomory–Hu Trees". Combinatorial Optimization: Theory and Algorithms (Algorithms and Combinatorics, 21). Springer Berlin Heidelberg. pp. 180–186. ISBN 978-3-540-71844-4.