Heteroreceptor

A heteroreceptor is a receptor regulating the synthesis and/or the release of mediators other than its own ligand.[1]

Heteroreceptors respond to neurotransmitters, neuromodulators, or neurohormones released from adjacent neurons or cells; they are opposite to autoreceptors, which are sensitive only to neurotransmitters or hormones released by the cell in whose wall they are embedded.[2]

Examples

  • Norepinephrine can influence the release of acetylcholine from parasympathetic neurons by acting on α2 adrenergic (α2A, α2B, and α2C) heteroreceptors.[3]
  • Acetylcholine can influence the release of norepinephrine from sympathetic neurons by acting on muscarinic-2 and muscarinic-4 heteroreceptors.
  • CB1 negatively modulates the release of GABA[4][5] and glutamate,[6] playing a crucial role in maintaining a homeostasis between excitatory and inhibitory transmission.
  • Glutamate released from an excitatory neuron escapes from the synaptic cleft and preferentially affects mGluR III receptors on the presynaptic terminals of interneurons. Glutamate spillover leads to inhibition of GABA release, modulating GABAergic transmission.[7][8]

See also

References

  1. Millan, M. J.; Lejeune, F.; Gobert, A. (2000). "Reciprocal autoreceptor and heteroreceptor control of serotonergic, dopaminergic and noradrenergic transmission in the frontal cortex: Relevance to the actions of antidepressant agents". Journal of Psychopharmacology (Oxford, England). 14 (2): 114–138. doi:10.1177/026988110001400202. PMID 10890307. S2CID 18333385.
  2. Schlicker, E.; Malinowska, B.; Kathmann, M.; Göthert, M. (1994). "Modulation of neurotransmitter release via histamine H3 heteroreceptors". Fundamental & Clinical Pharmacology. 8 (2): 128–137. doi:10.1111/j.1472-8206.1994.tb00789.x. PMID 8020871.
  3. Ma, D.; Rajakumaraswamy, N.; Maze, M. (2004). "2-Adrenoceptor agonists: Shedding light on neuroprotection?". British Medical Bulletin. 71: 77–92. doi:10.1093/bmb/ldh036. PMID 15684247.
  4. Katona, I.; Sperlágh, B.; Sík, A.; Käfalvi, A.; Vizi, E. S.; MacKie, K.; Freund, T. F. (1999). "Presynaptically located CB1 cannabinoid receptors regulate GABA release from axon terminals of specific hippocampal interneurons". The Journal of Neuroscience. 19 (11): 4544–4558. doi:10.1523/JNEUROSCI.19-11-04544.1999. PMC 6782612. PMID 10341254.
  5. Sousa, V. C.; Assaife-Lopes, N. L.; Ribeiro, J. A.; Pratt, J. A.; Brett, R. R.; Sebastião, A. M. (2010). "Regulation of Hippocampal Cannabinoid CB1 Receptor Actions by Adenosine A1 Receptors and Chronic Caffeine Administration: Implications for the Effects of Δ9-Tetrahydrocannabinol on Spatial Memory". Neuropsychopharmacology. 36 (2): 472–487. doi:10.1038/npp.2010.179. PMC 3055664. PMID 20927050.
  6. Hoffman, A. F.; Laaris, N.; Kawamura, M.; Masino, S. A.; Lupica, C. R. (2010). "Control of Cannabinoid CB1 Receptor Function on Glutamate Axon Terminals by Endogenous Adenosine Acting at A1 Receptors". Journal of Neuroscience. 30 (2): 545–555. doi:10.1523/JNEUROSCI.4920-09.2010. PMC 2855550. PMID 20071517.
  7. Semyanov, A; Kullmann, D. M. (2000). "Modulation of GABAergic signaling among interneurons by metabotropic glutamate receptors". Neuron. 25 (3): 663–72. doi:10.1016/s0896-6273(00)81068-5. PMID 10774733.
  8. Kullmann, D. M.; Semyanov, A (2002). "Glutamatergic modulation of GABAergic signaling among hippocampal interneurons: Novel mechanisms regulating hippocampal excitability". Epilepsia. 43 Suppl 5: 174–8. doi:10.1046/j.1528-1157.43.s.5.12.x. PMID 12121316. S2CID 19781597.


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.