Homoeoid
A homoeoid is a shell (a bounded region) bounded by two concentric, similar ellipses (in 2D) or ellipsoids (in 3D).[1][2] When the thickness of the shell becomes negligible, it is called a thin homoeoid. The name homoeoid was coined by Lord Kelvin and Peter Tait.[3]
Mathematical definition
If the outer shell is given by
with semiaxes the inner shell is given for by
- .
The thin homoeoid is then given by the limit
Physical meaning
A homoeoid can be used as a construction element of a matter or charge distribution. The gravitational or electromagnetic potential of a homoeoid homogeneously filled with matter or charge is constant inside the shell. This means that a test mass or charge will not feel any force inside the shell.[4]
See also
References
- Chandrasekhar, S.: Ellipsoidal Figures of Equilibrium, Yale Univ. Press. London (1969)
- Routh, E. J.: A Treatise on Analytical Statics, Vol II, Cambridge University Press, Cambridge (1882)
- Harry Bateman. "Partial differential equations of mathematical physics.", Cambridge, UK: Cambridge University Press, 1932 (1932).
- Michel Chasles, Solution nouvelle du problème de l’attraction d’un ellipsoïde hétérogène sur un point exterieur, Jour. Liouville 5, 465–488 (1840)
External links
- Media related to Homoeoid at Wikimedia Commons
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.