Kaurenoic acid

Kaurenoic acid (ent-kaur-16-en-19-oic acid or Kauren-19-oic acid) is a diterpene with antibacterial activity against Gram-positive bacteria. However its low solubility and blood lytic activity on erythrocytes might make it a poor pharmaceutical candidate.[1] Kaurenoic acid also has uterine relaxant activity via calcium blockade and opening ATP-sensitive potassium channels.

Kaurenoic acid
Names
IUPAC name
(5beta,8alpha,9beta,10alpha,13alpha)-kaur-16-en-18-oic acid
Other names
  • Cunabic acid
  • Kaurenic acid
Identifiers
3D model (JSmol)
10784819
ChEBI
ChEMBL
ChemSpider
KEGG
Properties
C20H30O2
Molar mass 302.45
Pharmacology
M09AX05 (WHO)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references

Kaurenoic acid is found in several plants such as Copaifera. It is a potential biomarker for the presence of sunflower in foods.[2]

Medical use

Kaurenoic acid has been studied for its medicinal properties and seems to have anti-inflammatory, antiulcerogenic, antitumor, antinociceptive, antimelanoma, antitilipoperoxidation, antioxidant and antimicrobial properties.[3]

Kaurenoic acid decreases leukocyte migration. It seems to inhibit histamine and serotonin pathways, in addition to antiprotozoal activities against Trypanosoma. cruzi and Leishmania amazonensis.[4]

References

  1. Vieira, Henriete S.; Takahashi, Jacqueline A.; Oliveira, Alaíde B. de; Chiari, Egler; Boaventura, Maria Amélia D. (2002). "Novel Derivatives of Kaurenoic Acid". Journal of the Brazilian Chemical Society. 13 (2): 151–157. doi:10.1590/S0103-50532002000200004. ISSN 0103-5053. Retrieved 24 January 2021.
  2. "Showing Compound Kaurenoic acid (FDB021671) - FooDB". Retrieved 24 January 2021.
  3. Rocha, Silvia Maria Machado da; Cardoso, Plínio Cerqueira dos Santos; Bahia, Marcelo de Oliveira; Pessoa, Claudia do Ó; Soares, Paulo Cardoso; Rocha, Simone Machado da; Burbano, Rommel Mário Rodríguez; Rocha, Carlos Alberto Machado da (1 June 2019). "Effect of the kaurenoic acid on genotoxicity and cell cycle progression in cervical cancer cells lines". Toxicology in Vitro. 57: 126–131. doi:10.1016/j.tiv.2019.02.022. ISSN 0887-2333. PMID 30822460. Retrieved 24 January 2021.
  4. al, D. Kian et (2018). "Trypanocidal activity of copaiba oil and kaurenoic acid does not depend on macrophage killing machinery | EndNote Click". Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie. 103: 1294–1301. doi:10.1016/j.biopha.2018.04.164. PMID 29864911. Retrieved 24 January 2021.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.