List of topologies

The following is a list of named topologies or particular topological spaces that appear in topology and related branches of mathematics. This is not a list of properties that a topology or topological space might have; for that, see List of general topology topics and Topological property.

Widely known topologies

Counter-example topologies

The following topologies are a known source of counterexamples for point-set topology.

Topologies defined in terms of other topologies

Natural topologies

List of natural topologies.

Compactifications

Other induced topologies

  • Box topology
  • Duplication of a point: Let be a non-isolated point of let be arbitrary, and let Then is a topology on and x and d have the same neighborhood filters in In this way, x has been duplicated.[1]

Topologies of uniform convergence

This lists named topologies of uniform convergence.

Fractal spaces

Other topologies

See also

References

    1. Wilansky 2008, p. 35.
    • Adams, Colin; Franzosa, Robert (2009). Introduction to Topology: Pure and Applied. New Delhi: Pearson Education. ISBN 978-81-317-2692-1. OCLC 789880519.
    • Arkhangel'skii, Alexander Vladimirovich; Ponomarev, V.I. (1984). Fundamentals of General Topology: Problems and Exercises. Mathematics and Its Applications. 13. Dordrecht Boston: D. Reidel. ISBN 978-90-277-1355-1. OCLC 9944489.
    • Bourbaki, Nicolas (1989) [1966]. General Topology: Chapters 1–4 [Topologie Générale]. Éléments de mathématique. Berlin New York: Springer Science & Business Media. ISBN 978-3-540-64241-1. OCLC 18588129.
    • Bourbaki, Nicolas (1989) [1967]. General Topology 2: Chapters 5–10 [Topologie Générale]. Éléments de mathématique. 4. Berlin New York: Springer Science & Business Media. ISBN 978-3-540-64563-4. OCLC 246032063.
    • Comfort, William Wistar; Negrepontis, Stylianos (1974). The Theory of Ultrafilters. 211. Berlin Heidelberg New York: Springer-Verlag. ISBN 978-0-387-06604-2. OCLC 1205452.
    • Dixmier, Jacques (1984). General Topology. Undergraduate Texts in Mathematics. Translated by Berberian, S. K. New York: Springer-Verlag. ISBN 978-0-387-90972-1. OCLC 10277303.
    • Császár, Ákos (1978). General topology. Translated by Császár, Klára. Bristol England: Adam Hilger Ltd. ISBN 0-85274-275-4. OCLC 4146011.
    • Dolecki, Szymon; Mynard, Frederic (2016). Convergence Foundations Of Topology. New Jersey: World Scientific Publishing Company. ISBN 978-981-4571-52-4. OCLC 945169917.
    • Dugundji, James (1966). Topology. Boston: Allyn and Bacon. ISBN 978-0-697-06889-7. OCLC 395340485.
    • Howes, Norman R. (23 June 1995). Modern Analysis and Topology. Graduate Texts in Mathematics. New York: Springer-Verlag Science & Business Media. ISBN 978-0-387-97986-1. OCLC 31969970. OL 1272666M.CS1 maint: date and year (link)
    • Jarchow, Hans (1981). Locally convex spaces. Stuttgart: B.G. Teubner. ISBN 978-3-519-02224-4. OCLC 8210342.
    • Joshi, K. D. (1983). Introduction to General Topology. New York: John Wiley and Sons Ltd. ISBN 978-0-85226-444-7. OCLC 9218750.
    • Kelley, John L. (1975). General Topology. Graduate Texts in Mathematics. 27. New York: Springer Science & Business Media. ISBN 978-0-387-90125-1. OCLC 338047.
    • Köthe, Gottfried (1969). Topological Vector Spaces I. Grundlehren der mathematischen Wissenschaften. 159. Translated by Garling, D.J.H. New York: Springer Science & Business Media. ISBN 978-3-642-64988-2. MR 0248498. OCLC 840293704.
    • Munkres, James R. (2000). Topology (Second ed.). Upper Saddle River, NJ: Prentice Hall, Inc. ISBN 978-0-13-181629-9. OCLC 42683260.
    • Schechter, Eric (1996). Handbook of Analysis and Its Foundations. San Diego, CA: Academic Press. ISBN 978-0-12-622760-4. OCLC 175294365.
    • Schubert, Horst (1968). Topology. London: Macdonald & Co. ISBN 978-0-356-02077-8. OCLC 463753.
    • Wilansky, Albert (2013). Modern Methods in Topological Vector Spaces. Mineola, New York: Dover Publications, Inc. ISBN 978-0-486-49353-4. OCLC 849801114.
    • Wilansky, Albert (17 October 2008) [1970]. Topology for Analysis. Mineola, New York: Dover Publications, Inc. ISBN 978-0-486-46903-4. OCLC 227923899.CS1 maint: date and year (link)
    • Willard, Stephen (2004) [1970]. General Topology. Dover Books on Mathematics (First ed.). Mineola, N.Y.: Dover Publications. ISBN 978-0-486-43479-7. OCLC 115240.
    This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.