Mnëv's universality theorem
In algebraic geometry, Mnëv's universality theorem is a result which can be used to represent algebraic (or semi algebraic) varieties as realizations of oriented matroids, a notion of combinatorics.[1][2][3]
Oriented matroids
For the purposes of Mnëv's universality, an oriented matroid of a finite subset is a list of all partitions of points in S induced by hyperplanes in . In particular, the structure of oriented matroid contains full information on the incidence relations in S, inducing on S a matroid structure.
The realization space of an oriented matroid is the space of all configurations of points inducing the same oriented matroid structure on S.
Stable equivalence of semialgebraic sets
For the purposes of Mnëv's Universality, the stable equivalence of semialgebraic sets is defined as follows.
Let U, V be semialgebraic sets, obtained as a disconnected union of connected semialgebraic sets
- ,
We say that U and V are rationally equivalent if there exist homeomorphisms defined by rational maps.
Let be semialgebraic sets,
- ,
with mapping to under the natural projection deleting last d coordinates. We say that is a stable projection if there exist integer polynomial maps
such that
The stable equivalence is an equivalence relation on semialgebraic subsets generated by stable projections and rational equivalence.
Mnëv's universality theorem
THEOREM (Mnëv's universality theorem)
Let V be a semialgebraic subset in defined over integers. Then V is stably equivalent to a realization space of a certain oriented matroid.
History
Mnëv's universality theorem was discovered by Nikolai Mnëv in his 1986 Ph.D. thesis.[4] It has numerous applications in algebraic geometry, due to Laurent Lafforgue, Ravi Vakil and others, allowing one to construct moduli spaces with arbitrarily bad behaviour.
Notes
- Universality Theorem, a lecture of Nikolai Mnëv (in Russian).
- Nikolai E. Mnëv, The universality theorems on the classification problem of configuration varieties and convex polytopes varieties (pp. 527–543), in "Topology and geometry: Rohlin Seminar." Edited by O. Ya. Viro. Lecture Notes in Mathematics, 1346. Springer-Verlag, Berlin, 1988.
- Vakil, Ravi (2006), "Murphy's Law in algebraic geometry: Badly-behaved deformation spaces", Inventiones Mathematicae, 164 (3): 569–590, arXiv:math/0411469, doi:10.1007/s00222-005-0481-9.
- Richter-Gebert, Jürgen (1995), "Mnëv's Universality Theorem Revisited", Séminaire Lotharingien de Combinatoire, B34h: 15
- Jürgen Richter-Gebert The universality theorems for oriented matroids and polytopes, Contemporary Mathematics 223, 269–292 (1999).
References
- Mnev, N. E. (1988), "The universality theorems on the classification problem of configuration varieties and convex polytopes varieties", Topology and Geometry — Rohlin Seminar, Lecture Notes in Mathematics, 1346, Springer Berlin Heidelberg, pp. 527–543, doi:10.1007/bfb0082792, ISBN 9783540502371
- Sturmfels, Bernd; Gritzmann, Peter, eds. (1991-06-26). Applied Geometry and Discrete Mathematics: The Victor Klee Festschrift. DIMACS Series in Discrete Mathematics and Theoretical Computer Science. 4. Providence, Rhode Island: American Mathematical Society. doi:10.1090/dimacs/004. ISBN 9780821865934.
- Vershik, A. M. (1988), Topology of the convex polytopes' manifolds, the manifold of the projective configurations of a given combinatorial type and representations of lattices, Lecture Notes in Mathematics, 1346, Springer Berlin Heidelberg, pp. 557–581, doi:10.1007/bfb0082794, ISBN 9783540502371
- "Nikolai Mnev Homepage". www.pdmi.ras.ru. Retrieved 2018-09-18.