PRAME

Melanoma antigen preferentially expressed in tumors is a protein that in humans is encoded by the PRAME gene.[3][4][5] Five alternatively spliced transcript variants encoding the same protein have been observed for this gene.[5]

PRAME
Identifiers
AliasesPRAME, CT130, MAPE, OIP-4, OIP4, preferentially expressed antigen in melanoma, PRAME nuclear receptor transcriptional regulator
External IDsOMIM: 606021 HomoloGene: 48404 GeneCards: PRAME
Gene location (Human)
Chr.Chromosome 22 (human)[1]
Band22q11.22Start22,547,701 bp[1]
End22,559,361 bp[1]
RNA expression pattern
More reference expression data
Orthologs
SpeciesHumanMouse
Entrez

23532

n/a

Ensembl

ENSG00000185686
ENSG00000275013

n/a

UniProt

P78395

n/a

RefSeq (mRNA)

n/a

RefSeq (protein)

n/a

Location (UCSC)Chr 22: 22.55 – 22.56 Mbn/a
PubMed search[2]n/a
Wikidata
View/Edit Human

Function

This gene encodes an antigen that is predominantly expressed in human melanomas and that is recognized by cytolytic T lymphocytes. It is not expressed in normal tissues, except testis. This expression pattern is similar to that of other CT antigens, such as MAGE, BAGE and GAGE. However, unlike these other CT antigens, this gene is also expressed in acute leukemias. The overexpression of PRAME in tumor tissues and relative low levels in normal somatic tissues make it an attractive target for cancer therapy. In recent years, immunotherapy has spearheaded a new era of cancer therapy resulting in the development of numerous novel antigen-specific immunotherapy approaches. Studies on PRAME-specific immunotherapy primarily involve vaccines and cellular immunotherapies.[6]

PRAME can inhibit retinoic acid signaling and retinoic acid mediated differentiation and apoptosis.[7] PRAME overexpression in triple negative breast cancer has also been found to promote cancer cell motility through induction of the epithelial-to-mesenchymal transition.[8]

Model organisms

Model organisms have been used in the study of PRAME function. A conditional knockout mouse line called Prametm1a(KOMP)Wtsi was generated at the Wellcome Trust Sanger Institute.[9] Male and female animals underwent a standardized phenotypic screen[10] to determine the effects of deletion.[11][12][13][14] Additional screens performed: - In-depth immunological phenotyping[15]

References

  1. ENSG00000275013 GRCh38: Ensembl release 89: ENSG00000185686, ENSG00000275013 - Ensembl, May 2017
  2. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  3. Ikeda H, Lethé B, Lehmann F, van Baren N, Baurain JF, de Smet C, Chambost H, Vitale M, Moretta A, Boon T, Coulie PG (Feb 1997). "Characterization of an antigen that is recognized on a melanoma showing partial HLA loss by CTL expressing an NK inhibitory receptor". Immunity. 6 (2): 199–208. doi:10.1016/S1074-7613(00)80426-4. PMID 9047241.
  4. Dunham I, Shimizu N, Roe BA, Chissoe S, Hunt AR, Collins JE, Bruskiewich R, Beare DM, Clamp M, Smink LJ, Ainscough R, Almeida JP, Babbage A, Bagguley C, Bailey J, Barlow K, Bates KN, Beasley O, Bird CP, Blakey S, Bridgeman AM, Buck D, Burgess J, Burrill WD, O'Brien KP (Dec 1999). "The DNA sequence of human chromosome 22". Nature. 402 (6761): 489–95. Bibcode:1999Natur.402..489D. doi:10.1038/990031. PMID 10591208.
  5. "Entrez Gene: PRAME preferentially expressed antigen in melanoma".
  6. Al-Khadairi G, Decock J (July 2019). "Cancer Testis Antigens and Immunotherapy: Where Do We Stand in the Targeting of PRAME?". Cancers. 11 (7): 984. doi:10.3390/cancers11070984. PMC 6678383. PMID 31311081.
  7. Epping MT, Wang L, Edel MJ, Carlée L, Hernandez M, Bernards R (September 2005). "The human tumor antigen PRAME is a dominant repressor of retinoic acid receptor signaling". Cell. 122 (6): 835–47. doi:10.1016/j.cell.2005.07.003. hdl:1874/17819. PMID 16179254. S2CID 18144920.
  8. Al-Khadairi G, Naik A, Thomas R, Al-Sulaiti B, Rizly S, Decock J (January 2019). "PRAME promotes epithelial-to-mesenchymal transition in triple negative breast cancer". Journal of Translational Medicine. 17 (1): 9. doi:10.1186/s12967-018-1757-3. PMC 6317205. PMID 30602372.
  9. Gerdin AK (2010). "The Sanger Mouse Genetics Programme: high throughput characterisation of knockout mice". Acta Ophthalmologica. 88: 925–7. doi:10.1111/j.1755-3768.2010.4142.x. S2CID 85911512.
  10. "International Mouse Phenotyping Consortium".
  11. Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, Mujica AO, Thomas M, Harrow J, Cox T, Jackson D, Severin J, Biggs P, Fu J, Nefedov M, de Jong PJ, Stewart AF, Bradley A (Jun 2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature. 474 (7351): 337–42. doi:10.1038/nature10163. PMC 3572410. PMID 21677750.
  12. Dolgin E (Jun 2011). "Mouse library set to be knockout". Nature. 474 (7351): 262–3. doi:10.1038/474262a. PMID 21677718.
  13. Collins FS, Rossant J, Wurst W (Jan 2007). "A mouse for all reasons". Cell. 128 (1): 9–13. doi:10.1016/j.cell.2006.12.018. PMID 17218247. S2CID 18872015.
  14. White JK, Gerdin AK, Karp NA, Ryder E, Buljan M, Bussell JN, Salisbury J, Clare S, Ingham NJ, Podrini C, Houghton R, Estabel J, Bottomley JR, Melvin DG, Sunter D, Adams NC, Tannahill D, Logan DW, Macarthur DG, Flint J, Mahajan VB, Tsang SH, Smyth I, Watt FM, Skarnes WC, Dougan G, Adams DJ, Ramirez-Solis R, Bradley A, Steel KP (Jul 2013). "Genome-wide generation and systematic phenotyping of knockout mice reveals new roles for many genes". Cell. 154 (2): 452–64. doi:10.1016/j.cell.2013.06.022. PMC 3717207. PMID 23870131.
  15. "Infection and Immunity Immunophenotyping (3i) Consortium".

Further reading

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.