Radiogenomics
The term radiogenomics is used in two contexts: either to refer to the study of genetic variation associated with response to radiation (Radiation Genomics) or to refer to the correlation between cancer imaging features and gene expression (Imaging Genomics).
Radiation Genomics
In radiation genomics, radiogenomics is used to refer to the study of genetic variation associated with response to radiation therapy. Genetic variation, such as single nucleotide polymorphisms, is studied in relation to a cancer patient’s risk of developing toxicity following radiation therapy.[1][2][3] It is also used in the context of studying the genomics of tumor response to radiation therapy.[4][5]
The term radiogenomics was coined more than ten years ago by Andreassen et al. (2002)[6] as an analogy to pharmacogenomics, which studies the genetic variation associated with drug responses. See also West et al. (2005)[7] and Bentzen (2006).[8]
The Radiogenomics Consortium
In 2009,[9][10] a Radiogenomics Consortium (RGC) was established to facilitate and promote multi-centre collaboration of researchers linking genetic variants with response to radiation therapy. The Radiogenomics Consortium (http://epi.grants.cancer.gov/radiogenomics/) is a Cancer Epidemiology Consortium supported by the Epidemiology and Genetics Research Program of the National Cancer Institute of the National Institutes of Health (http://epi.grants.cancer.gov/radiogenomics/).[11] RGC researchers have recently completed a meta-analysis that identified genetic variants associated with radiation toxicities in prostate cancer patients.[12]
Imaging Genomics
Since the turn of the twentieth century, radiological images have been used to diagnose disease on a large scale, and has been used successfully to diagnose conditions affecting every organ and tissue type in the body. This is because tissue imaging correlates with tissue pathology. The addition of genomic data in the last twenty years, including DNA microarrays, miRNA, RNA-Seq allows new correlations to be made between cellular genomics and tissue-scale imaging.
Practice and Applications of Imaging Genomics
In imaging genomics, radiogenomics can be used to create imaging biomarkers that can identify the genomics of a disease, especially cancer without the use of a biopsy. Various techniques for dealing with high-dimensional data are used to find statistically significant correlations between MRI, CT, and PET imaging features and the genomics of disease, including SAM, VAMPIRE, and GSEA.
The imaging radiogenomic approach has proven successful[13] in determining the MRI phenotype associated genetics of glioblastoma, a highly aggressive type of brain tumor with low prognosis. The first large-scale MR-imaging microRNA-mRNA correlative study in GBM was published by Zinn et al. in 2011[14] Similar studies in liver cancer have successfully determined much of the liver cancer genome from non-invasive imaging features.[15] Gevaert et al. at Stanford University have shown the potential to link image features of non-small cell lung nodules in CT scans to predict survival by leveraging publicly available gene expression data.[16] This publication was accompanied by an editorial discussing the synergy between imaging and genomics.[17] More recently, Mu Zhou et al. at Stanford University have showed that multiple associations between semantic image features and metagenes that represented canonical molecular pathways, and it can result in noninvasive identification of molecular properties of non-small cell lung cancer.[18]
Several radiogenomic studies have now been carried out in prostate cancer,[19][20][21] Some have noted that genetic features correlated with MRI signal are often also associated with more aggressive prostate cancer.[22] A systematic review of the genetic features found in more visible lesions on MRI identified multiple studies which had found loss of the tumour suppressor PTEN, increased gene expression linked to cell proliferation as well as cell-ECM interactions.[23] This may indicate that certain genetic features drives cellular changes which ultimately effect fluid movement which can be seen on MRI and these features are predominantly associated with poor prognosis.[23] The combination of more dangerous genetic alterations, histology and clinical outcomes for patients with prostate tumours which are visible on mpMRI, has lead to suggestions that the definition of 'clinically significant cancer' should be at least in part based on mpMRI findings.[24]
The radiogenomic approach has been also successfully applied in breast cancer. In 2014, Mazurowski et al.[25] showed that enhancement dynamics in MRI, computed using computer vision algorithms, are associated with gene expression-based tumor molecular subtype in breast cancer patients.
Programs that study the connections between radiology and genomics are active at the University of Pennsylvania, UCLA, MD Anderson Cancer Center, Stanford University and at Baylor College of Medicine in Houston, Texas.
See also
- Pharmacogenomics
- Radiation Therapy
- Radiosensitivity
References
- Barnett GC, Elliott RM, Alsner J, Andreassen CN, Abdelhay O, Burnet NG, Chang-Claude J, Coles CE, Gutiérrez-Enríquez S, Fuentes-Raspall MJ, Alonso-Muñoz MC, Kerns S, Raabe A, Symonds RP, Seibold P, Talbot CJ, Wenz F, Wilkinson J, Yarnold J, Dunning AM, Rosenstein BS, West CM, Bentzen SM (2012). "Individual patient data meta-analysis shows no association between the SNP rs1800469 in TGFB and late radiotherapy toxicity". Radioth Oncol. 105 (3): 289–95. doi:10.1016/j.radonc.2012.10.017. PMC 3593101. PMID 23199655.
- Barnett GC, Coles CE, Elliott RM, Baynes C, Luccarini C, Conroy D, Wilkinson JS, Tyrer J, Misra V, Platte R, Gulliford SL, Sydes MR, Hall E, Bentzen SM, Dearnaley DP, Burnet NG, Pharoah PD, Dunning AM, West CM (2012). "Independent validation of genes and polymorphisms reported to be associated with radiation toxicity: a prospective analysis study". Lancet Oncol. 13 (1): 65–77. doi:10.1016/S1470-2045(11)70302-3. PMID 22169268.
- Talbot CJ, Tanteles GA, Barnett GC, Burnet NG, Chang-Claude J, Coles CE, Davidson S, Dunning AM, Mills J, Murray RJ, Popanda O, Seibold P, West CM, Yarnold JR, Symonds RP (2012). "A replicated association between polymorphisms near TNFα and risk for adverse reactions to radiotherapy". Br J Cancer. 107 (4): 748–53. doi:10.1038/bjc.2012.290. PMC 3419947. PMID 22767148.
- Das, AK; Bell MH; Nirodi CS; Story MD; Minna JD (2010). "Radiogenomics predicting tumor responses to radiotherapy in lung cancer". Sem Radiat Oncol. 20 (3): 149–55. doi:10.1016/j.semradonc.2010.01.002. PMC 2917342. PMID 20685577.
- Yard, Brian D.; Adams, Drew J.; Chie, Eui Kyu; Tamayo, Pablo; Battaglia, Jessica S.; Gopal, Priyanka; Rogacki, Kevin; Pearson, Bradley E.; Phillips, James (2016-04-25). "A genetic basis for the variation in the vulnerability of cancer to DNA damage". Nature Communications. 7: 11428. Bibcode:2016NatCo...711428Y. doi:10.1038/ncomms11428. ISSN 2041-1723. PMC 4848553. PMID 27109210.
- Andreassen, CN; Alsner J; Overgaard J (2002). "Does variability in normal tissue reactions after radiotherapy have a genetic basis--where and how to look for it?". Radioth Oncol. 64 (2): 131–40. doi:10.1016/s0167-8140(02)00154-8. PMID 12242122.
- West CM, McKay MJ, Hölscher T, Baumann M, Stratford IJ, Bristow RG, Iwakawa M, Imai T, Zingde SM, Anscher MS, Bourhis J, Begg AC, Haustermans K, Bentzen SM, Hendry JH (2005). "Molecular markers predicting radiotherapy response: report and recommendations from an International Atomic Energy Agency technical meeting". Int J Radiat Oncol Biol Phys. 62 (5): 1264–73. doi:10.1016/j.ijrobp.2005.05.001. PMID 16029781.
- Bentzen, SM (2006). "Preventing or reducing late side effects of radiation therapy: radiobiology meets molecular pathology". Nat Rev Cancer. 6 (9): 702–13. doi:10.1038/nrc1950. PMID 16929324.
- West C, Rosenstein BS, Alsner J, Azria D, Barnett G, Begg A, Bentzen S, Burnet N, Chang-Claude J, Chuang E, Coles C, De Ruyck K, De Ruysscher D, Dunning A, Elliott R, Fachal L, Hall J, Haustermans K, Herskind C, Hoelscher T, Imai T, Iwakawa M, Jones D, Kulich C; EQUAL-ESTRO, Langendijk JH, O'Neils P, Ozsahin M, Parliament M, Polanski A, Rosenstein B, Seminara D, Symonds P, Talbot C, Thierens H, Vega A, West C, Yarnold J (2010). "Establishment of a Radiogenomics Consortium". Int J Radiat Oncol Biol Phys. 76 (5): 1295–6. doi:10.1016/j.ijrobp.2009.12.017. PMID 20338472.CS1 maint: uses authors parameter (link)
- West, C; Rosenstein BS (2010). "Establishment of a radiogenomics consortium". Radioth Oncol. 94 (1): 117–8. doi:10.1016/j.radonc.2009.12.007. PMID 20074824.
- "NCI EGRP".
- Kerns, Sarah L; Fachal, Laura; Dorling, Leila; Barnett, Gillian C; Baran, Andrea; Peterson, Derick R; Hollenberg, Michelle; Hao, Ke; Narzo, Antonio Di; Ahsen, Mehmet Eren; Pandey, Gaurav; Bentzen, Søren M; Janelsins, Michelle; Elliott, Rebecca M; Pharoah, Paul D P; Burnet, Neil G; Dearnaley, David P; Gulliford, Sarah L; Hall, Emma; Sydes, Matthew R; Aguado-Barrera, Miguel E; Gómez-Caamaño, Antonio; Carballo, Ana M; Peleteiro, Paula; Lobato-Busto, Ramón; Stock, Richard; Stone, Nelson N; Ostrer, Harry; Usmani, Nawaid; Singhal, Sandeep; Tsuji, Hiroshi; Imai, Takashi; Saito, Shiro; Eeles, Rosalind; DeRuyck, Kim; Parliament, Matthew; Dunning, Alison M; Vega, Ana; Rosenstein, Barry S; West, Catharine M L (16 May 2019). "Radiogenomics Consortium Genome-Wide Association Study Meta-analysis of Late Toxicity after Prostate Cancer Radiotherapy". JNCI: Journal of the National Cancer Institute. 112 (2): 179–190. doi:10.1093/jnci/djz075. PMC 7019089. PMID 31095341.
- Diehn, Maximilian; Nardini, Christine; Wang, David S.; McGovern, Susan; Jayaraman, Mahesh; Liang, Yu; Aldape, Kenneth; Cha, Soonmee; Kuo, Michael D. (2008). "Identification of noninvasive imaging surrogates for brain tumor gene-expression modules". Proceedings of the National Academy of Sciences. 105 (13): 5213–8. doi:10.1073/pnas.0801279105. PMC 2278224. PMID 18362333.
- Zinn, Pascal O.; Mahajan, Bhanu; Sathyan, Pratheesh; Singh, Sanjay K.; Majumder, Sadhan; Jolesz, Ferenc A.; Colen, Rivka R. (2011). Deutsch, Eric (ed.). "Radiogenomic Mapping of Edema/Cellular Invasion MRI-Phenotypes in Glioblastoma Multiforme". PLOS ONE. 6 (10): e25451. Bibcode:2011PLoSO...625451Z. doi:10.1371/journal.pone.0025451. PMC 3187774. PMID 21998659.
- Rutman, Aaron M.; Kuo, Michael D. (2009). "Radiogenomics: Creating a link between molecular diagnostics and diagnostic imaging". European Journal of Radiology. 70 (2): 232–41. doi:10.1016/j.ejrad.2009.01.050. PMID 19303233.
- Gevaert, O.; Xu, J.; Hoang, C. D.; Leung, A.N.; Xu, Y.; Quon, A.; Rubin, D.L.; Napel, S.; Plevritis, S.K. (2012). "Non-small cell lung cancer: identifying prognostic imaging biomarkers by leveraging public gene expression microarray data--methods and preliminary results". Radiology. 264 (2): 387–96. doi:10.1148/radiol.12111607. PMC 3401348. PMID 22723499.
- Jaffe, C. (2012). "Imaging and genomics: is there a synergy?". Radiology. 264 (2): 329–31. doi:10.1148/radiol.12120871. PMID 22821693.
- Zhou, M.; Leung, A.; Echegaray, S.; Gentles, A.; Shrager, J.; Plevritis, S.; Rubin, D.L.; Napel, S.; Gevaert, O. (2017). "Non-Small Cell Lung Cancer Radiogenomics Map Identifies Relationships between Molecular and Imaging Phenotypes with Prognostic Implications". Radiology. 286 (1): 307–15. doi:10.1148/radiol.2017161845. PMC 5749594. PMID 28727543.
- Houlahan, Kathleen E.; Salmasi, Amirali; Sadun, Taylor Y.; Pooli, Aydin; Felker, Ely R.; Livingstone, Julie; Huang, Vincent; Raman, Steven S.; Ahuja, Preeti; Sisk, Anthony E.; Boutros, Paul C. (July 2019). "Molecular Hallmarks of Multiparametric Magnetic Resonance Imaging Visibility in Prostate Cancer". European Urology. 76 (1): 18–23. doi:10.1016/j.eururo.2018.12.036. ISSN 1873-7560. PMID 30685078.
- Li, Ping; You, Sungyong; Nguyen, Christopher; Wang, Yanping; Kim, Jayoung; Sirohi, Deepika; Ziembiec, Asha; Luthringer, Daniel; Lin, Shih-Chieh; Daskivich, Timothy; Wu, Jonathan (2018). "Genes involved in prostate cancer progression determine MRI visibility". Theranostics. 8 (7): 1752–1765. doi:10.7150/thno.23180. ISSN 1838-7640. PMC 5858498. PMID 29556354.
- Purysko, Andrei S.; Magi-Galluzzi, Cristina; Mian, Omar Y.; Sittenfeld, Sarah; Davicioni, Elai; du Plessis, Marguerite; Buerki, Christine; Bullen, Jennifer; Li, Lin; Madabhushi, Anant; Stephenson, Andrew (September 2019). "Correlation between MRI phenotypes and a genomic classifier of prostate cancer: preliminary findings". European Radiology. 29 (9): 4861–4870. doi:10.1007/s00330-019-06114-x. ISSN 1432-1084. PMC 6684343. PMID 30847589.
- Norris, Joseph M.; Simpson, Benjamin S.; Parry, Marina A.; Kasivisvanathan, Veeru; Allen, Clare; Ball, Rhys; Freeman, Alex; Kelly, Daniel; Kirkham, Alex; Whitaker, Hayley C.; Emberton, Mark (March 2020). "Genetic correlates of prostate cancer visibility (and invisibility) on multiparametric magnetic resonance imaging: it's time to take stock". BJU International. 125 (3): 340–342. doi:10.1111/bju.14919. ISSN 1464-410X. PMID 31600865.
- Norris, Joseph M.; Simpson, Benjamin S.; Parry, Marina A.; Allen, Clare; Ball, Rhys; Freeman, Alex; Kelly, Daniel; Kim, Hyung L.; Kirkham, Alex; You, Sungyong; Kasivisvanathan, Veeru (2020-07-01). "Genetic Landscape of Prostate Cancer Conspicuity on Multiparametric Magnetic Resonance Imaging: A Systematic Review and Bioinformatic Analysis". European Urology Open Science. 20: 37–47. doi:10.1016/j.euros.2020.06.006. ISSN 2666-1683.
- Norris, Joseph M.; Simpson, Benjamin S.; Freeman, Alex; Kirkham, Alex; Whitaker, Hayley C.; Emberton, Mark. "Conspicuity of prostate cancer on multiparametric magnetic resonance imaging: A cross-disciplinary translational hypothesis". The FASEB Journal. n/a (n/a). doi:10.1096/fj.202001466R. ISSN 1530-6860.
- Mazurowski, M. A.; Zhang, J.; Grimm, L. J.; Yoon, S. C.; Silber, J. I. (2014). "Radiogenomic Analysis of Breast Cancer: Luminal B Molecular Subtype Is Associated with Enhancement Dynamics at MR Imaging". Radiology. 273 (2): 365–72. doi:10.1148/radiol.14132641. PMID 25028781.
Further reading
- https://epi.grants.cancer.gov/radiogenomics/
- Kerns, Sarah L.; Dorling, Leila; Fachal, Laura; Bentzen, Søren; Pharoah, Paul D.P.; Barnes, Daniel R.; Gómez-Caamaño, Antonio; Carballo, Ana M.; Dearnaley, David P.; Peleteiro, Paula; Gulliford, Sarah L.; Hall, Emma; Michailidou, Kyriaki; Carracedo, Ángel; Sia, Michael; Stock, Richard; Stone, Nelson N.; Sydes, Matthew R.; Tyrer, Jonathan P.; Ahmed, Shahana; Parliament, Matthew; Ostrer, Harry; Rosenstein, Barry S.; Vega, Ana; Burnet, Neil G.; Dunning, Alison M.; Barnett, Gillian C.; West, Catharine M.L.; Radiogenomics, Consortium. (August 2016). "Meta-analysis of Genome Wide Association Studies Identifies Genetic Markers of Late Toxicity Following Radiotherapy for Prostate Cancer". EBioMedicine. 10: 150–163. doi:10.1016/j.ebiom.2016.07.022. PMC 5036513. PMID 27515689.
- Zinn, Pascal O.; Sathyan, Pratheesh; Mahajan, Bhanu; Bruyere, John; Hegi, Monika; Majumder, Sadhan; Colen, Rivka R. (2012). Lesniak, Maciej S (ed.). "A Novel Volume-Age-KPS (VAK) Glioblastoma Classification Identifies a Prognostic Cognate microRNA-Gene Signature". PLOS ONE. 7 (8): e41522. Bibcode:2012PLoSO...741522Z. doi:10.1371/journal.pone.0041522. PMC 3411674. PMID 22870228.
- Segal, Eran; Sirlin, Claude B; Ooi, Clara; Adler, Adam S; Gollub, Jeremy; Chen, Xin; Chan, Bryan K; Matcuk, George R; et al. (2007). "Decoding global gene expression programs in liver cancer by noninvasive imaging". Nature Biotechnology. 25 (6): 675–80. doi:10.1038/nbt1306. PMID 17515910.
- Andreassen CN, Barnett GC, Langendijk JA, Alsner J, De Ruysscher D, Krause M, Bentzen SM, Haviland JS, Griffin C, Poortmans P, Yarnold JR (2012). "Conducting radiogenomic research - Do not forget careful consideration of the clinical data". Radioth Oncol. 105 (3): 337–40. doi:10.1016/j.radonc.2012.11.004. PMID 23245646.
- West, CM; Barnett GC (2011). "Genetics and genomics of radiotherapy toxicity: towards prediction". Genome Med. 3 (8): 52. doi:10.1186/gm268. PMC 3238178. PMID 21861849.
- Oh, JH; Kerns, S; Ostrer, H; Powell, SN; Rosenstein, B; Deasy, JO (2017). "Computational methods using genome-wide association studies to predict radiotherapy complications and to identify correlative molecular processes". Sci Rep. 7: 43381. Bibcode:2017NatSR...743381O. doi:10.1038/srep43381. PMC 5324069. PMID 28233873.
- Hall, William A.; Bergom, Carmen; Thompson, Reid F.; Baschnagel, Andrew M.; Vijayakumar, Srinivasan; Willers, Henning; Li, X. Allen; Schultz, Christopher J.; Wilson, George D.; West, Catharine M.L.; Capala, Jacek; Coleman, C. Norman; Torres-Roca, Javier F.; Weidhaas, Joanne; Feng, Felix Y. (June 2018). "Precision Oncology and Genomically Guided Radiation Therapy: A Report From the American Society for Radiation Oncology/American Association of Physicists in Medicine/National Cancer Institute Precision Medicine Conference". International Journal of Radiation Oncology*Biology*Physics. 101 (2): 274–284. doi:10.1016/j.ijrobp.2017.05.044. PMID 28964588.
- Lee, S; Kerns, S; Ostrer, H; Rosenstein, B; Deasy, JO; Oh, JH (2018). "Machine Learning on a Genome-wide Association Study to Predict Late Genitourinary Toxicity After Prostate Radiation Therapy". Int J Radiat Oncol Biol Phys. 101 (1): 128–135. doi:10.1016/j.ijrobp.2018.01.054. PMC 5886789. PMID 29502932.
- Johnson, K; Chang-Claude, J; Critchley, AM; Kyriacou, C; Lavers, S; Rattay, T; Seibold, P; Webb, A; West, C; Symonds, RP; Talbot, CJ; Consortium, Requite (Jan 2019). "Genetic variants predict optimal timing of radiotherapy to reduce side-effects in breast cancer patients". Clin Oncol (R Coll Radiol). 31 (1): 9–16. doi:10.1016/j.clon.2018.10.001. PMID 30389261.
- Mbah, C; De Ruyck, K; De Schrijver, S.; De Sutter, C.; Schiettecatte, K.; Monten, C.; Paelinck, L.; De Neve, W.; Thierens, H.; West, C.; Amorim, G.; Thas, O.; Veldeman, L. (2018). "A new approach for modeling patient overall radiosensitivity and predicting multiple toxicity endpoints for breast cancer patients". Acta Oncologica. 57 (5): 604–12. doi:10.1080/0284186X.2017.1417633. PMID 29299946.