Arthur Zimek
Arthur Zimek is a professor in data mining, data science and machine learning at the University of Southern Denmark in Odense, Denmark.
Arthur Zimek | |
---|---|
Nationality | German |
Alma mater | Ludwig-Maximilians-Universität München |
Scientific career | |
Fields | outlier detection, correlation clustering |
Institutions | University of Southern Denmark, University of Alberta, Ludwig-Maximilians-Universität München |
Doctoral advisor | Hans-Peter Kriegel |
He graduated from the Ludwig Maximilian University of Munich in Munich, Germany, where he worked with Prof. Hans-Peter Kriegel.[1] His dissertation on "Correlation Clustering" was awarded the "SIGKDD Doctoral Dissertation Award 2009 Runner-up"[2] by the Association for Computing Machinery.
He is well known[3] for his work on outlier detection,[4][5] density-based clustering,[6] correlation clustering,[7][8] and the curse of dimensionality.[9][10]
He is one of the founders and core developers of the open-source ELKI data mining framework.[11][12]
References
- News, SIGKDD. "SIGKDD Awards : 2015 SIGKDD Innovation Award: Hans-Peter Kriegel". www.kdd.org. Retrieved 2017-05-29.
with his team members Peer Kroeger, Erich Schubert and Arthur Zimek
- "SIGKDD Doctoral Dissertation Award". ACM SIGKDD. Archived from the original on 2010-11-29. Retrieved 30 May 2010.
- E.g. Aggarwal, Charu C. (2016-12-10). Outlier analysis. Springer. pp. 49pp. ISBN 9783319475783. OCLC 967215852.
- Kriegel, Hans-Peter; Schubert, Matthias; Zimek, Arthur (2008). Angle-based Outlier Detection in High-dimensional Data. Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD '08. New York, NY, USA: ACM. pp. 444–452. CiteSeerX 10.1.1.329.7579. doi:10.1145/1401890.1401946. ISBN 9781605581934. S2CID 3072058.
- Kriegel, Hans-Peter; Kröger, Peer; Schubert, Erich; Zimek, Arthur (2009). LoOP: Local Outlier Probabilities. Proceedings of the 18th ACM Conference on Information and Knowledge Management. CIKM '09. New York, NY, USA: ACM. pp. 1649–1652. doi:10.1145/1645953.1646195. ISBN 9781605585123. S2CID 14401236.
- Kriegel, Hans-Peter; Kröger, Peer; Sander, Jörg; Zimek, Arthur (2011-04-05). "Density-based clustering". Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery. 1 (3): 231–240. doi:10.1002/widm.30. S2CID 36920706.
- Böhm, Christian; Kailing, Karin; Kröger, Peer; Zimek, Arthur (2004). Computing Clusters of Correlation Connected Objects. Proceedings of the 2004 ACM SIGMOD International Conference on Management of Data. SIGMOD '04. New York, NY, USA: ACM. pp. 455–466. CiteSeerX 10.1.1.5.1279. doi:10.1145/1007568.1007620. ISBN 978-1581138597. S2CID 6411037.
- Achtert, E.; Böhm, C.; David, J.; Kröger, P.; Zimek, A. (2008-04-24). Proceedings of the 2008 SIAM International Conference on Data Mining. Proceedings. Society for Industrial and Applied Mathematics. pp. 763–774. doi:10.1137/1.9781611972788.69. ISBN 9780898716542.
- Zimek, Arthur; Erich, Schubert; Hans-Peter, Kriegel (2012-08-27). "A survey on unsupervised outlier detection in high-dimensional numerical data". Statistical Analysis and Data Mining. 5 (5): 5. doi:10.1002/sam.11161.
- Houle, Michael E.; Kriegel, Hans-Peter; Kröger, Peer; Schubert, Erich; Zimek, Arthur (2010-06-30). Can Shared-Neighbor Distances Defeat the Curse of Dimensionality?. Scientific and Statistical Database Management. Lecture Notes in Computer Science. 6187. Springer, Berlin, Heidelberg. pp. 482–500. CiteSeerX 10.1.1.378.3285. doi:10.1007/978-3-642-13818-8_34. ISBN 978-3-642-13817-1.
- Achtert, Elke; Kriegel, Hans-Peter; Zimek, Arthur (2008-07-09). ELKI: A Software System for Evaluation of Subspace Clustering Algorithms. Scientific and Statistical Database Management. Lecture Notes in Computer Science. 5069. Springer, Berlin, Heidelberg. pp. 580–585. CiteSeerX 10.1.1.144.3263. doi:10.1007/978-3-540-69497-7_41. ISBN 978-3-540-69476-2.
- "The ELKI Team". elki-project.github.io. Retrieved 2017-05-29.
External links
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.