Cooperative multitasking
Cooperative multitasking, also known as non-preemptive multitasking, is a style of computer multitasking in which the operating system never initiates a context switch from a running process to another process. Instead, in order to run multiple applications concurrently, processes voluntarily yield control periodically or when idle or logically blocked. This type of multitasking is called cooperative because all programs must cooperate for the scheduling scheme to work.
In this scheme, the process scheduler of an operating system is known as a cooperative scheduler, having its role reduced down to starting the processes and letting them return control back to it voluntarily.[1][2]
Usage
Although it is rarely used in modern larger systems, it is widely used in memory-constrained embedded systems and also, in specific applications such as CICS or the JES2 subsystem. Cooperative multitasking was the primary scheduling scheme for 16-bit applications employed by Microsoft Windows before Windows 95 and Windows NT (such as Windows 3.1x), and by the classic Mac OS. Windows 9x used non-preemptive multitasking for 16-bit legacy applications, and the PowerPC Versions of Mac OS X prior to Leopard used it for classic applications.[1] NetWare, which is a network-oriented operating system, used cooperative multitasking up to NetWare 6.5. Cooperative multitasking is still used on RISC OS systems.[3]
Cooperative multitasking is used with await in languages with a single-threaded event-loop in their runtime, like JavaScript or Python.
Problems
As a cooperatively multitasked system relies on each process regularly giving up time to other processes on the system, one poorly designed program can consume all of the CPU time for itself, either by performing extensive calculations or by busy waiting; both would cause the whole system to hang. In a server environment, this is a hazard that makes the entire environment unacceptably fragile.[1] However, cooperative multitasking allows much simpler implementation of applications because their execution is never unexpectedly interrupted by the process scheduler; for example, various functions inside the application do not need to be reentrant.[2]
In contrast, preemptive multitasking interrupts applications and gives control to other processes outside the application's control.
See also
References
- "Definition of non-preemptive multitasking". pcmag.com. Retrieved August 15, 2015.
- Joe Bartel (November 5, 2011). "Non-Preemptive Multitasking" (PDF). classiccmp.org. Retrieved August 15, 2015.
- "Preemptive multitasking". riscos.info. November 2, 2009. Retrieved August 15, 2015.