Depsipeptide

A depsipeptide is a peptide in which one or more of its amide, -C(O)NHR-, groups are replaced by the corresponding ester, -C(O)OR,[1] Many depsipeptides have both peptide and ester linkages. They are mainly found in marine and microbial natural products.[2]

Example of a depsipeptide with 3 amide groups (highlighted blue) and one ester group (highlighted green). R1 and R3 are organic groups (e. g. methyl) or a hydrogen atom found in α-hydroxycarboxylic acids. R2, R4 and R5 are organic groups or a hydrogen atom found in common amino acids.

Depsipeptide natural products

Enterochelin is a depsipeptide that is an iron-transporter.[3]

Several depsipeptides have been found to exhibit anti-cancer properties.[4]

A depsipeptide enzyme inhibitor includes romidepsin, a member of the bicyclic peptide class, a known histone deacetylase inhibitors (HDACi). It was first isolated as a fermentation product from Chromobacterium violaceum by the Fujisawa Pharmaceutical Company.[5]

Etamycin was shown in preliminary data in 2010 to have potent activity against MRSA in a mouse model.[6] Several depsipeptides from Streptomyces exhibit antimicrobial activity.[7][8] These form a new, potential class of antibiotics known as acyldepsipeptides (ADEPs). ADEPs target and activate the casein lytic protease (ClpP) to initiate uncontrolled peptide and unfolded protein degradation, killing many Gram-positive bacteria.[9][10][11]

Further reading

  • papuamide Ford, PW; Gustafson, KR; McKee, TC; Shigematsu, N; Maurizi, LK; Pannell, LK; Williams, DE; de Silva, ED; Lassota, P; Allen, TM; Van Soest, R; Andersen, RJ; Boyd, MR (1999). "Papuamides A-D, HIV-Inhibitory and Cytotoxic Depsipeptides from the Sponges Theonella mirabilis and Theonella swinhoei Collected in Papua New Guinea". J. Am. Chem. Soc. 121: 5899–5909. doi:10.1021/ja990582o.
  • neamphamide A Oku, N; Gustafson, KR; Cartner, LK; Wilson, JA; Shigematsu, N; Hess, S; Pannell, LK; Boyd, MR; McMahon, JB (2004). "Neamphamide A. A new HIV-inhibitory depsipeptide from the Papua New Guinea marine sponge Neamphius huxleyi". J. Nat. Prod. 67 (8): 1407–11. doi:10.1021/np040003f. PMID 15332865.
  • callipeltin A Zampella, A; D'Auria, MV; Paloma, LG; Casapullo, A; Minale, L; Debitus, C; Henin, Y (1996). "Callipeltin A, an Anti-HIV Cyclic Depsipeptide from the New Caledonian Lithistida Sponge Callipelta sp.". J. Am. Chem. Soc. 118: 6202–9. doi:10.1021/ja954287p.
  • mirabamides A-D Plaza, A; Gustchina, E; Baker, HL; Kelly, M; Bewley, CA (2007). "Mirabamides A-D. Depsipeptides from the sponge Siliquariaspongia mirabilis that inhibit HIV-1 fusion". J. Nat. Prod. 70 (11): 1753–60. doi:10.1021/np070306k. PMID 17963357.; Andjelic, CD; Planelles, V; Barrows, LR (2008). "Characterizing the Anti-HIV Activity of Papuamide A." Mar Drugs. 6 (4): 528–49. doi:10.3390/md20080027. PMC 2630844. PMID 19172193.

References

  1. IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version:  (2006) "depsipeptides". doi:10.1351/goldbook.D01604
  2. Yasumasa Hamada, Takayuki Shioiri (2005). "Recent Progress of the Synthetic Studies of Biologically Active Marine Cyclic Peptides and Depsipeptides". Chem. Rev. 105: 4441–4482. doi:10.1021/cr0406312.CS1 maint: uses authors parameter (link)
  3. Walsh, Christopher T., Jun Liu, Frank Rusnak, and Masahiro Sakaitani (1990). "Molecular Studies on Enzymes in Chorismate Metabolism and the Enterobactin Biosynthetic Pathway". Chemical Reviews. 90 (7): 1105–1129. doi:10.1021/cr00105a003.CS1 maint: multiple names: authors list (link)
  4. Kitagaki, J.; Shi, G.; Miyauchi, S.; Murakami, S.; Yang, Y. (2015). "Cyclic depsipeptides as potential cancer therapeutics". Anticancer Drugs. 26: 259–71. doi:10.1097/CAD.0000000000000183. PMID 25419631.
  5. Yurek-George, Alexander; Cecil, Alexander Richard Liam; Mo, Alex Hon Kit; Wen, Shijun; Rogers, Helen; Habens, Fay; Maeda, Satoko; Yoshida, Minoru; et al. (2007). "The First Biologically Active Synthetic Analogues of FK228, the Depsipeptide Histone Deacetylase Inhibitor". Journal of Medicinal Chemistry. 50 (23): 5720–5726. doi:10.1021/jm0703800. PMID 17958342.
  6. Haste, Nina M; Perera, Varahenage R; Maloney, Katherine N; Tran, Dan N; Jensen, Paul; Fenical, William; Nizet, Victor; Hensler, Mary E (2010). "Activity of the streptogramin antibiotic etamycin against methicillin-resistant Staphylococcus aureus". Journal of Antibiotics. 63 (5): 219. doi:10.1038/ja.2010.22. PMC 2889693. PMID 20339399.
  7. K. H. Michel, R. E. Kastner (Eli Lilly and Company), US 4492650, 1985 [Chem. Abstr. 1985, 102, 130459]
  8. Osada, Hiroyuki; Yano, Tatsuya; Koshino, Hiroyuki; Isono, Kiyoshi (1991). "Enopeptin A, a novel depsipeptide antibiotic with anti-bacteriophage activity". The Journal of Antibiotics. 44 (12): 1463–1466. doi:10.7164/antibiotics.44.1463.
  9. Li; Him Shun, Dominic; Guarné, Alba; Maurizi, Michael R.; Cheng, Yi-Qiang; Wright, Gerard D.; Ghirlando, Rodolfo; Joseph, Ebenezer; Gloyd, Melanie; Seon Chung, Yu; Ortega, Joaquin (2010). "Acyldepsipeptide Antibiotics Induce The Formation Of A Structured Axial Channel In ClpP: A Model For The ClpX/ClpA-Bound State Of ClpP". Chemistry & Biology. 17 (9): 959–969. doi:10.1016/j.chembiol.2010.07.008. PMC 2955292. PMID 20851345.
  10. Hinzen, Berthold; Labischinski, Harald; Brötz-Oesterhelt, Heike; Endermann, Rainer; Benet-Buchholz, Jordi; Hellwig, Veronica; Häbich, Dieter; Schumacher, Andreas; Lampe, Thomas; Paulsen, Holger; Raddatz, Siegfried (2006). "Medicinal Chemistry Optimization of Acyldepsipeptides of the Enopeptin Class Antibiotics". ChemMedChem. 1 (7): 689–693. doi:10.1002/cmdc.200600055. PMID 16902918.
  11. Carney, Daniel W.; Schmitz, Karl R.; Truong, Jonathan V.; Sauer, Robert T.; Sello, Jason K. (2014). "Restriction of the Conformational Dynamics of the Cyclic Acyldepsipeptide Antibiotics Improves Their Antibacterial Activity". JACS. 136: 1922–1929. doi:10.1021/ja410385c.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.