Difluorophosphate

Difluorophosphate or difluorodioxophosphate or phosphorodifluoridate is an anion with formula PO
2
F
2
. It has a single negative charge and resembles perchlorate (ClO
4
) and monofluorosulfonate (SO3F) in shape and compounds.[2] These ions are isoelectronic, along with tetrafluoroaluminate, phosphate, orthosilicate, and sulfate.[2][3] It forms a series of compounds. The ion is toxic to mammals as it causes blockage to iodine uptake in the thyroid. However it is degraded in the body over several hours.[2]

Difluorophosphate
Ball-and-stick model of the difluorophosphate ion
Spacefill model of difluorophosphate
Names
Systematic IUPAC name
Difluorophosphate[1]
Identifiers
3D model (JSmol)
ChemSpider
Properties
PO
2
F
2
Molar mass 100.97 g mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N (what is YN ?)
Infobox references

Compounds containing difluorophosphate may have it as a simple uninegative ion, it may function as a difluorophosphato ligand where it is covalently bound to one or two metal atoms, or go on to form a networked solid.[4] It may be covalently bound to a non metal or an organic moiety to make an ester or an amide.

Formation

The ammonium salt of difluorophosphate is formed from treating phosphorus pentoxide with ammonium fluoride.[2] This was how the ion was first made by its discoverer, Willy Lange, in 1929.[3][5]

Alkali chlorides can react with dry difluorophosphoric acid to form alkali metal salts.[6]

NaCl + HPO2F2 → NaPO2F2 + HCl (gas)

Fluoridation of dichlorophosphates can produce difluorophosphates.[7] Another method is fluorination of phosphates or polyphosphates.[5]

Trimethylsilyl difluorophosphate reacts with metal chlorides to give difluorophosphates.[8]

The anhydride phosphoryl difluoride oxide (P2O3F4) reacts with oxides such as UO3 to yield difuorophosphates.[9] Phosphoryl difluoride oxide also reacts with alkali fluorides to yield difluorophosphates.[10]

Properties

In ammonium difluorophosphate the difluorophosphate ion has these interatomic dimensions: P–O length 1.457 Å, P–F length 1.541 Å, O–P–O angle 118.7°, F–P–O 109.4° and F–P–F angle 98.6°. Hydrogen bonding from ammonium to oxygen atoms causes a change to the difluorophosphate ion in the ammonium salt. In potassium difluorophosphate the ion has dimensions: P–O length 1.470 Å, P–F length 1.575 Å, O–P–O angle 122.4°, F–P–O 108.6° and F–P–F angle 97.1°.[11]

On heating the salts that are not of alkali or alkaline earths, difluorophosphates decompose firstly by giving off POF3 forming a monofluorophosphate (PO3F2−) compound, and then this in turn decomposes to an orthophosphate PO3−
4
compound.[12][13]

Difluorophosphate salts are normally soluble and stable in water. However, in acidic or alkaline conditions they can be hydrolyzed to monofluorophosphates and hydrofluoric acid.[14] The caesium and potassium salts are the least soluble.[14]

Irradiating potassium difluorophosphate with gamma rays can make the free radicals PO2F•−, PO3F•− and PO
2
F
2
.[15][16]

Compounds

formula structure infrared melting point °C[17] reference comment
LiPO2F2 360 [5][6]
Be(PO2F2)2 >400d [17] prepared from BeCl2 and acid
C2H5OPOF2 [18]
NH4PO2F2 Orthorhombic a=8·13, b=6·43, c=7·86 Å Z=4 space group Pnma P-F stretching 842 860 cm−1;P-O stretching 1138 1292  cm−1 213 [6][11]
NO2PO2F2 515, 530, 550, 560, 575, 845, 880, 1145, 1300, 2390, 3760 cm−1 [19] nitronium formed from anydride and N2O5
NOPO2F2 500, 840, 880, 1130, 1272, 1315, 2278 cm−1 [19] nitrosonium formed from anydride and N2O3
NaPO2F2 210 [6]
Mg(PO2F2)2 200 [5]
Al(PO2F2)3 1290 1200 971 918 642 582 541 505 cm−1 355(impurity) [7][8] Formed from AlEt3 and acid. Colourless insoluble powder. Polymeric.[4]
Si(OPOF2)4 [18] formed from SiCl4 and anhydride
(CH3)Si3OPOF2 [4][18] formed from anhydride and [(CH3)3Si]2O
KPO2F2 Orthorhombic a=8.03 b=6.205 c=7.633 Å Z=4 V=380.9 Å3 density=2.44 510, 525, 570, 835, 880, 1145, 1320, 1340 cm−1 263 [6][11][19][20][21] colourless elongated prisms
K4(PO2F2)2(S2O7) C2/c a = 13.00, b = 7.543, c = 19.01, β = 130.07°, Z = 4 [22]
Ca(PO2F2)2•CH3COOCH2CH3 [23]
Ca(PO2F2)2 >345d [5]
VO2PO2F2 [9]
CrO2(PO2F2)2 [24] formed from anhydride;red-brown
Cr(PO2F2)3 320 385 490 575 905 955 1165 1255 cm−1 [24] formed from excess anhydride, green
Mn(CO)5PO2F2 184 [25]
HMn(PO2F2)3 [26] dissolve manganese in acid; white
(NH4)Mn3(PO2F2)(PO3F)2F2 [27]
Fe(PO2F2)2 1290 1139 869(double) 668(weak) 496 463 cm−1 180d [12] colour blue green, hygroscopic, melts 250 °C, above 300 °C starts decomposing to Fe3(PO4)2
Fe(PO2F2)3 1242 1173 965 914 570 528 493 262 cm−1 >400 [7] decomposes at 230 °C yielding FeF3; dissolve iron in acid in presence of oxygen
KFe2(PO2F2)(PO3F)2F2 [27]
Co(PO2F2)2 173 [17] prepared from CoCl2 and acid; pink or blue; blue formed by heating pink to 140 °C
HCo(PO2F2)3 [26] dissolve cobalt in acid; red-purple
Co(PO2F2)2•2CH3CN molw weight=342.9 orthorhombic a=9.227 Å b=13.871 Å c=9.471 Å V=1212 Å3 Z=4 density=1.88 [28] treat HCo(PO2F2)3 with MeCN for a few weeks; red crystals
(NH4)Co3(PO2F2)(PO3F)2F2 [27]
Ni(PO2F2)2 255d [17] slowly prepared from NiCl2 and acid; yellow
HNi(PO2F2)3 [26] dissolve nickel in acid; yellow
Cu(PO2F2)2 MW=265.5 orthorhombic Fddd a=10.134 Å b=24.49 Å c=34.06 Å Z=48 V=8454.3 Å3 density=2.50 265d [5][28] pale blue needles
CuI(xantphos)2(μ-PO2F2) monoclinic a=12.435 b=10.887 c=25.682 β=100.220 V=3421 Å3 [29] polymer colourless
Zn(PO2F2)2 ?room temp [5] glassy
ZnH2(PO2F2)4 [8]
Ga(PO2F2)3 [30]
[(CH3)2GaPO2F2]2 380 492 520 551 616 709 750 899 949 1171 1218 1262 1295 1404 2922 2982 [4][31] dimer
RbPO2F2 Orthorhombic a=8·15, b=6·45, c=7·79 Å Z=4 V=409.5 Å3 density=3.02 P-F stretching 827 946 cm−1;P-O stretching 1145 1320  cm−1 160 [6][11][20] white
Sr(PO2F2)2 250d [17] prepared from SrCl2 and acid
Ag PO2F2 [32]
Ag9(PO2F2)14 [27]
Ag (1-Methyl-2-(alkylthiomethyl)-1H-benzimidazole)PO2F2 [32]
Ag (2,6-bis-[(2-methylthiophenyl)-2-azaethenyl]pyridine)PO2F2 Triclinic P1 a=7.687 b=10.740, c=13.568 Å, α=99.52°, β=96.83°, γ=99.83°, Z=2, V=1076 Å3 [33] mol weight=585.37 density 1.81
4,4'-Dicyanodiphenylacetylene AgPO2F2
Cd(PO2F2)2 245d [5]
In(PO2F2)3 1269 1179 962 910 567 528 492 269 cm−1 [7] white decomposes at 260 °C yielding InF3
[(CH3)2InPO2F2]2 373 490 500 535 559 735 878 925 1128 1179 1275 1435 2928 3000 [31] dimer
SnCl2(PO2F2)2 [34]
(CH3)2Sn(PO2F2)2 204d [17] prepared from (CH3)2SnCl2 and acid; yellow
(C2H5)2Sn(PO2F2)2 262d [17] prepared from (C2H5)2SnCl2 and acid; yellow
(n-C3H7)2Sn(PO2F2)2 245d [17] prepared from (n-C3H7)2SnCl2 and acid; yellow
(n-C4H9)2Sn(PO2F2)2 235d [17] prepared from (n-C4H9)2SnCl2 and acid; yellow
(n-C8H17)2Sn(PO2F2)2 114 [17] prepared from (n-C8H17)2SnCl2 and acid; yellow
SbCl4PO2F2 [34]
SbF4PO2F2 [34]
(2,2-dipyradyl)2Re(CO)2PO2F2 [35]
Bis(triphenylphosphine sulfide-S)gold(I) Difluorophosphate [36]
IO2PO2F2 Raman: 1163, 918 839, 799, 781, 737, 713, 637, 378, 329, 323, 295, 219, 191, 163, 130 cm−1 [37] yellowish colour, produced from IO3, decomposed by water
IO3PO2F2 Raman: 1123, 891, 797, 717, 671, 643, 569, 473, 395, 367, 343, 305, 269, 247, 217 cm−1 [37] yellowish colour, produced from H5IO6, decomposed by water
FXePO2F2 [38]
Xe(PO2F2)2 [38]
CsPO2F2 Orthorhombic a=8·437, b=6·796, c=8·06 Å Z=4 V=462.1 Å3 density=3.36 286 [6][11][20]
Cs2Fe2(PO2F2)(PO2F)2F3 [27]
Ba(PO2F2)2 >400 [5]
Re(CO)5PO2F2 [35]
Hg(PO2F2)2 [5]
Hg2(PO2F2)2 Raman: 220 cm−1 [5] produced from anydride
TlPO2F2 [5] produced from andhydride, or acid on TlCl
[(CH3)2TlPO2F2]2 360 374 500 505 520 559 850 880 1120 1140 1195 1250 1285 2932 3020 [31] dimer
Pb(PO2F2)2 189d [5]
UO2(PO2F2)2 1124 980 924 854 498 260 cm−1 [9] IR spectrum due to UO22+
(C2H5)4NPO2F2 [39]
1-ethyl-3-methylimidazolium difluorophosphate [40] ionic liquid
1-butyl-3-methylimidazolium difluorophosphate [40] ionic liquid
1-butyl-1-methylpyrrolidinium difluorophosphate [40] ionic liquid
1-butyl-1-methylpiperidinium difluorophosphate [40] ionic liquid
Di(3,3',4,4'-tetramethyl-2,2',5,5'-tetraselenafulvalenium)difluorophosphate [41] Transitions to a metallic state below 137K
1,4-diphenyl-3,5-enanilo-4,5-dihydro-1,2,4-triazole (nitron) monoclinic P21/n a=7.3811 b=14.9963 c=

16.922 β=102.138 V=1361.2 Z=4

[2][27] insoluble; yellow-brown
Strychnine PO2F2 [3]
Cocaine PO2F2 [3]
Brucine PO2F2 [3]
Morphine PO2F2 [3]
N(CH3)4 PO2F2 [3]
HB(PO2F2)4 469 502 552 647 836 940 994 1093 1348 1567 cm−1 [4] formed from BBr3 and acid; liquid
LiB(PO2F2)4 monoclinic P21/c a=7.9074 Å b=14.00602 Å c=13.7851 Å β=121.913° Z=4 479 502 568 833 945 1002 1080 1334 cm−1 [4] formed from HB(PO2F2)4 and butyl lithium; colourless
HS(CH3)2B(PO2F2)4 472 511 555 648 832 933 993 1082 1337 1436 2851 2921 3042 cm−1 [4] formed from BH3•S(CH3)2 and acid; ionic liquid
[LiEtOEt]3Al(PO2F2)6 trigonal R3 a=17.4058 Å b=17.4058 Å c=21.4947 Å γ=120° Z=6 417 503 536 624 723 891 922 964 1174 1204 1283 cm−1 [4] formed from butyl lithium and triethyl aluminium and the acid; white
K2CrO2(PO2F2)4 305 370 485 550 870 920 1050 1130 1250 cm−1 [24] formed from anhydride and K2CrO4; brown; dec 145°
Na2MoO2(PO2F2)4 280 490 620 880 915 950 1020 1070 1140 1280 cm−1 [24] formed from anhydride and K2MoO4; white; dec 125 °C; amorphous
Na2WO2(PO2F2)4 280 474 620 930 1030 1130 1230 cm−1 [24] formed from anhydride and K2WO4; white; dec 109 °C amorphous

Difluorphosphoric acid

Difluorphosphoric acid (HPO2F2) is one of the fluorophosphoric acids. It is produced when phosphoryl fluoride reacts with water. POF3 + H2O → HPO2F2 + HF. This in turn is hydrolysed more to give monofluorophosphoric acid (H2PO3F), and a trace of hexafluorophosphoric acid (HPF6). HPO2F2 also is produced when HF reacts with phosphorus pentoxide. Yet another method involves making difluorphosphoric acid as a side product of calcium fluoride being heated with damp phosphorus pentoxide. A method to make pure difluorphosphoric acid involves heating phosphoryl fluoride with monofluorophosphoric acid and separating the product by distillation. POF3 + H2PO3F → 2HPO2F2.[42]

Difluorophosphoric acid can also be produced by fluorinating phosphorus oxychlorides. P2O3Cl4 and POCl3 react with hydrogen fluoride solution to yield HPO2Cl2 and then HPO2F2.[43] Yet another way is to treat orthophosphate (PO3−
4
) with fluorosulfuric acid (HSO3F).[44]

Difluorphosphoric acid melts at −96.5 °C and boils at 115.9 °C. Its density at 25 °C is 1.583.[14]

Phosphoryl difluoride oxide

Difluorophosphoric acid anhydride also known as phosphoryl difluoride oxide or diphosphoryl tetrafluoride (F2OPOPOF2 or P2O3F4) is an anhydride of difluorphosphoric acid. It crystallises in the orthorhombic system, with space group Pcca and Z = 4.[45] P2O3F4 can be made by refluxing difluorophosphoric acid with phosphorus pentoxide. P2O3F4 boils at 71 °C.[46]

Substitution

In addition to the isoelectronic series, ions related by substituting fluorine or oxygen by other elements include monofluorophosphate, difluorothiophosphate, dichlorothiophosphate, dichlorophosphate, chlorofluorothiophosphate, chlorofluorophosphate, dibromophosphate, and bromofluorophosphate.[47]

Adducts

Difluorophosphate can form adducts with PF5 and AsF5. In these the oxygen atoms form a donor-acceptor link between the P and As (or P) atoms, linking the difluorides to the pentafluorides. Example salts include KPO2F2·2AsF5, KPO2F2·AsF5, KPO2F2·2PF5 and KPO2F2·PF5.[48]

Amines can react with phosphoryl fluoride to make substances with a formula RR′N–POF2. The amines shown to do this include ethylamine, isopropylamine, n-butylamine, tert-butylamine, dimethylamine, and diethylamine. The monoamines can further react to yield an alkyliminophosphoricfluoride (RN=POF).[49]

References

  1. Toy, Arthur D. F. (22 Oct 2013). The Chemistry of Phosphorus: Pergamon Texts in Inorganic Chemistry, Volume 3. Pergamon Press. pp. 536–537. ISBN 9781483147413. Retrieved 19 June 2015.
  2. Anbar, M.; Guttmann, S.; Lewitus, Z. (30 May 1959). "Effect of Monofluorosulphonate, Difluorophosphate and Fluoroborate Ions on the Iodine Uptake of the Thyroid Gland". Nature. 183 (4674): 1517–1518. Bibcode:1959Natur.183.1517A. doi:10.1038/1831517a0. PMID 13666792. S2CID 4291858.
  3. Lange, Willy (3 April 1929). "Über die Difluorphosphorsäure und ihre der Perchlorsäure ähnliche Salzbildung". Berichte der Deutschen Chemischen Gesellschaft (A and B Series). 62 (4): 786–792. doi:10.1002/cber.19290620408.
  4. Schulz, Christoph; Eiden, Philipp; Klose, Petra; Ermantraut, Andreas; Schmidt, Michael; Garsuch, Arnd; Krossing, Ingo (2015). "Homoleptic borates and aluminates containing the difluorophosphato ligand – [M(O2PF2)x]y− – synthesis and characterization". Dalton Trans. 44 (15): 7048–7057. doi:10.1039/c5dt00469a. PMID 25785817.
  5. Vast, P.; Semmoud, A.; Addou, A.; Palavit, G. (March 1988). "Etude methodologique de la synthese des difluorodioxophosphates metalliques a partir de l'oxyde difluorure de phosphoryle". Journal of Fluorine Chemistry. 38 (3): 297–302. doi:10.1016/S0022-1139(00)81065-9.
  6. Thompson, R.C.; Reed, W. (July 1969). "Preparation and infrared spectra of alkali metal difluorophosphates". Inorganic and Nuclear Chemistry Letters. 5 (7): 581–585. doi:10.1016/0020-1650(69)80034-6.
  7. Weidlein, J. (April 1968). "Darstellung, Eigenschaften und IR-Spektren von OTi(O2PCl2)2, Fe(O2PF2)3 und In(O2PF2)3". Zeitschrift für anorganische und allgemeine Chemie. 358 (1–2): 13–20. doi:10.1002/zaac.19683580103.
  8. Shihada, Abdel-Fattah; Mohammed, Abdulalah T. (1 January 1980). "Zur Reaktion von Trimethylsilyl-difluorophosphat, Trimethylsilyl-dimethylphosphinat und Difluorophosphorsäureanhydrid mit TiCl4 bzw. SbCl5 / On the Reactions of Trimethylsilyl Difluorophosphate, Trimethylsilyl Dimethylphosphinate and Difluorophosphoric Acid Anhydride with TiCl4 and SbCl5, respectively". Zeitschrift für Naturforschung B. 35 (1): 60–63. doi:10.1515/znb-1980-0114. S2CID 96302051.
  9. Vast, P.; Semmoud, A. (January 1985). "Preparation de nouveaux difluorodioxophosphates a partir de l'oxyde de difluorure de phosphoryle Partie V. Reactions aur le trioxyde d'uranium". Journal of Fluorine Chemistry. 27 (1): 47–52. doi:10.1016/S0022-1139(00)80896-9.
  10. Addou, A.; Vast, P.; Legrand, P. (January 1982). "Champ de forces de symetrie locale des composés oxyfluorés du phosphore(V)—I. Les difluorodioxophosphates (DFP) alcalins". Spectrochimica Acta Part A: Molecular Spectroscopy. 38 (7): 785–790. Bibcode:1982AcSpA..38..785A. doi:10.1016/0584-8539(82)80068-8.
  11. Harrison, R. W.; Trotter, James (1969). "Structure of ammonium difluorophosphate". Journal of the Chemical Society A: Inorganic, Physical, Theoretical: 1783. doi:10.1039/J19690001783.
  12. Vast, P.; Semmoud, A. (June 1994). "Comportement thermique du difluorodioxophosphate ferreux". Journal of Thermal Analysis. 41 (6): 1489–1493. doi:10.1007/bf02549945. S2CID 95079191.
  13. Vast, P.; Semmoud, A.; Palavit, G. (December 1986). "Preparation de l'acide monofluorotrioxophosphorique H2PO3F a partir de l'acide difluorodioxophosphorique HPO2F2". Journal of Fluorine Chemistry. 34 (2): 229–232. doi:10.1016/s0022-1139(00)85072-1.
  14. Reed, William (September 1965). Studies of Difluorophosphoric Acid and its Alkali Metal Salts (PDF) (Thesis). Retrieved 13 June 2015.
  15. Begum, Afrozi; Subramanian, S.; Symons, M. C. R. (1970). "Unstable intermediates. Part LXVIII. Electron spin resonance studies of the radicals O3PF and O2PF2". Journal of the Chemical Society A: Inorganic, Physical, Theoretical: 1323. doi:10.1039/J19700001323.
  16. Begum, A.; Subramanian, S.; Symons, M. C. R. (1971). "Unstable intermediates. Part LXXXVI. Electron spin resonance studies of the effect of γ-rays on potassium difluorophosphate: the radical PO2F?". Journal of the Chemical Society A: Inorganic, Physical, Theoretical: 700–702. doi:10.1039/J19710000700.
  17. Tan, Thiam Hock (August 1970). "Preparation and Properties of Metal Difluorophosphates" (PDF). University of British Columbia. Cite journal requires |journal= (help)
  18. Roesky, Herbert W. (July 1967). "Über Reaktionen mit Pyrophosphoryltetrafluorid". Chemische Berichte. 100 (7): 2147–2150. doi:10.1002/cber.19671000706.
  19. Addou, A.; Vast, P. (August 1979). "Preparation de nouveaux difluorodioxophosphates a partir de l'oxyde de difluororure de phosphoryle. Partie I - Reactions sur les oxydes d'azote". Journal of Fluorine Chemistry. 14 (2): 163–169. doi:10.1016/S0022-1139(00)82884-5.
  20. Trotter, James; Whitlow, S. H. (1967). "The structures of caesium and rubidium difluorophosphates". Journal of the Chemical Society A: Inorganic, Physical, Theoretical: 1383–1386. doi:10.1039/J19670001383.
  21. Harrison, R. W.; Thompson, R. C.; Trotter, James (1966). "The structure of potassium difluorophosphate". Journal of the Chemical Society A: Inorganic, Physical, Theoretical: 1775. doi:10.1039/J19660001775.
  22. Zhang, Wenyao; Jin, Wenqi; Yang, Zhihua; Pan, Shilie (2020). "K 4 (PO 2 F 2 ) 2 (S 2 O 7 ): first fluorooxophosphorsulfate with mixed-anion [S 2 O 7 ] 2− and [PO 2 F 2 ] − groups". Dalton Transactions: 10.1039.D0DT03307C. doi:10.1039/D0DT03307C. ISSN 1477-9226.
  23. Grunze, H.; Jost, K.-H.; Wolf, G.-U. (April 1969). "Salze von Halogenophosphorsäuren. V. Darstellung und Struktur des Bis(äthylacetat)-calcium-difluorophosphates Ca[PO2F2]2 • 2 CH3COOC2H5". Zeitschrift für anorganische und allgemeine Chemie. 365 (5–6): 294–300. doi:10.1002/zaac.19693650509.
  24. Brown, S.D.; Emme, L.M.; Gard, G.L. (December 1975). "The reaction of chromium trioxide and metal oxide salts with P2O3F4". Journal of Inorganic and Nuclear Chemistry. 37 (12): 2557–2558. doi:10.1016/0022-1902(75)80891-8.
  25. Wimmer, FL; Snow, MR (1978). "Perchlorate and difluorophosphate coordination derivatives of manganese carbonyl". Australian Journal of Chemistry. 31 (2): 267. doi:10.1071/CH9780267.
  26. Dove, Michael F. A.; Hibbert, Richard C.; Logan, Norman (1985). "Difluorophosphate complexes of chromium, manganese, iron, cobalt, and nickel". Journal of the Chemical Society, Dalton Transactions (4): 707. doi:10.1039/DT9850000707.
  27. Weil, Matthias; Fürst, Markus (2020-07-01). "Crystal structure of (1,4-diphenyl-4 H -1,2,4-triazol-3-yl)phenylamine difluorophosphate, and a survey of the difluorophosphate anion (PO 2 F 2 − )". Acta Crystallographica Section E. 76 (7): 1003–1006. doi:10.1107/S2056989020006933. ISSN 2056-9890. PMC 7336792. PMID 32695441.
  28. Begley, Michael J.; Dove, Michael F. A.; Hibbert, Richard C.; Logan, Norman; Nunn, Michael; Sowerby, D. Bryan (1985). "Crystal structures of the difluorophosphate complexes, Co(O2PF2)2•2MeCN and Cu(O2PF2)2". Journal of the Chemical Society, Dalton Transactions (11): 2433. doi:10.1039/DT9850002433.
  29. Keller, Sarah; Brunner, Fabian; Prescimone, Alessandro; Constable, Edwin C.; Housecroft, Catherine E. (August 2015). "Hexafluoridophosphate partial hydrolysis leading to the one-dimensional coordination polymer [{Cu(xantphos)(μ-PO2F2)}n]". Inorganic Chemistry Communications. 58: 64–66. doi:10.1016/j.inoche.2015.06.002.
  30. Shihada, Abdel-Fattah; Hassan, Bushra K.; Mohammed, Abdulalah T. (July 1980). "Difluorophosphate des Aluminiums, Galliums und Zinks". Zeitschrift für anorganische und allgemeine Chemie. 466 (1): 139–144. doi:10.1002/zaac.19804660116.
  31. Schaible, B.; Weidlein, J. (February 1974). "Untersuchungen an Dialkylmetallphosphor- und -phosphinsäurederivaten der Elemente Aluminium, Gallium, Indium und Thallium. II. Die Schwingungsspektren der Difluoro- und Dichlorophosphate". Zeitschrift für anorganische und allgemeine Chemie. 403 (3): 301–309. doi:10.1002/zaac.19744030309.
  32. Albrecht, Markus; Hübler, Klaus; Kaim, Wolfgang (May 2000). "Syntheses, Structures, and Properties of the Complexes [Ag(N∧S)n](X), N∧S = 1-Methyl-2-(alkylthiomethyl)-1H-benzimidazoles, X = PF6 (n = 2) or PO2F2 (n = 1)". Zeitschrift für anorganische und allgemeine Chemie. 626 (5): 1033–1037. doi:10.1002/(SICI)1521-3749(200005)626:5<1033::AID-ZAAC1033>3.0.CO;2-A.
  33. Fessler, Th. U.; Hübener, R.; Strähle, J. (September 1997). "Synthese von Kupfer- und Silberkomplexen mit fünfzähnigen N,S- und sechszähnigen N,O-Chelatliganden - Charakterisierung und Kristallstrukturen von {Cu2[C6H4(SO2)NC(O)]2(C5H5N)4}, {Cu2[C5H3N(CHNC6H4SCH3)2]2}(PF6)2 und {Ag[C5H3N(CHNC6H4SCH3)2]}PO2F2". Zeitschrift für anorganische und allgemeine Chemie. 623 (9): 1367–1374. doi:10.1002/zaac.19976230908.
  34. Krüger, N.; Dehnicke, K.; Shihada, A.-F. (February 1978). "Difluorophosphate von Zinn(IV) und Antimon(V)". Zeitschrift für anorganische und allgemeine Chemie. 438 (1): 169–175. doi:10.1002/zaac.19784380118.
  35. Horn, E; Snow, MR (1980). "Perchlorate and difluorophosphate coordination derivatives of rhenium carbonyl". Australian Journal of Chemistry. 33 (11): 2369. doi:10.1071/CH9802369.
  36. LeBlanc, D. J.; Britten, J. F.; Lock, C. J. L. (15 September 1997). "Bis(triphenylphosphine sulfide-)gold(I) Difluorophosphate(V)". Acta Crystallographica Section C. 53 (9): 1204–1206. doi:10.1107/S0108270197005209.
  37. Addou, A.; Vast, P. (July 1980). "Preparation de nouveaux difluorodioxophosphates a partir de l'oxyde de difluorure de phosphoryle. Partie II. Reactions sur les acides iodique et periodique". Journal of Fluorine Chemistry. 16 (1): 89–96. doi:10.1016/s0022-1139(00)85151-9.
  38. Eisenberg, Max.; Desmarteau, Darryl D. (August 1972). "Xenon(II) difluorophosphates. Preparations, properties, and evidence for the difluorophosphate free radical". Inorganic Chemistry. 11 (8): 1901–1904. doi:10.1021/ic50114a033.
  39. Matsumoto, Kazuhiko; Okawa, Takeshi; Hagiwara, Rika (2012). "The Crystal to Plastic Crystal Phase Transition of Tetraethylammonium Difluorophosphate and Tetrafluoroborate". Chemistry Letters. 41 (4): 394–396. doi:10.1246/cl.2012.394. hdl:2433/259816.
  40. Matsumoto, Kazuhiko; Hagiwara, Rika (3 August 2009). "A New Series of Ionic Liquids Based on the Difluorophosphate Anion". Inorganic Chemistry. 48 (15): 7350–7358. doi:10.1021/ic9008009. PMID 19580312.
  41. Eriks, K.; Wang, H. H.; Reed, P. E.; Beno, M. A.; Appelman, E. H.; Williams, J. M. (15 February 1985). "Di(3,3',4,4'-tetramethyl-2,2',5,5'-tetraselenafulvalenium)difluorophosphate, (C10H12Se4)2PO2F2, at 293 and 125 K". Acta Crystallographica Section C. 41 (2): 257–260. doi:10.1107/S0108270185003535.
  42. Lange, Willy; Livingston, Ralph (March 1950). "Studies of Fluorophosphoric Acids and their Derivatives. XIV. Preparation of Anhydrous Difluorophosphoric Acid". Journal of the American Chemical Society. 72 (3): 1280–1281. doi:10.1021/ja01159a057.
  43. Semmoud, A.; Benghalem, A.; Addou, A. (January 1990). "Acide difluorophosphorique: nouvelle preparation". Journal of Fluorine Chemistry. 46 (1): 1–6. doi:10.1016/S0022-1139(00)81555-9.
  44. Vast, P.; Semmoud, A.; Addou, A.; Palavit, G. (March 1985). "Nouvelle methode de preparation de l'acide difluorophosphorique". Journal of Fluorine Chemistry. 27 (3): 319–325. doi:10.1016/S0022-1139(00)81312-3.
  45. Zeng, Xiaoqing; Gerken, Michael; Beckers, Helmut; Willner, Helge (17 June 2010). "ChemInform Abstract: Spectroscopic and Structural Studies of Difluorophosphoryl Azide F2P(O)N3, Difluorophosphoryl Isocyanate F2P(O)NCO, and Difluorophosphoric Acid Anhydride, F2(O)POP(O)F2". ChemInform. 41 (28): no. doi:10.1002/chin.201028001. originally in Inorg. Chem. 49 (2010) 6, 3002–3010
  46. Robinson, E. A. (September 1962). "The Preparation and Raman Spectrum of Diphosphoryl Tetrafluoride: Comparison with the Spectrum of Diphosphoryl Tetrachloride". Canadian Journal of Chemistry. 40 (9): 1725–1729. doi:10.1139/v62-264.
  47. Dehnicke, Kurt; Shihada, Abdel-Fattah (1976). "Structural and bonding aspects in phosphorus chemistry—inorganic derivatives of oxohalogeno phosphoric acids". Electrons in Oxygen- and Sulphur-Containing Ligands Structure and Bonding. Structure and Bonding. 28: 51–82. doi:10.1007/3-540-07753-7_2. ISBN 978-3-540-07753-4.
  48. Christe, K. O.; GNANN, R.; WAGNER, R. I.; WILSON, W. W. (4 August 2010). "ChemInform Abstract: The (PO2F2×2 AsF5) Anion, an Example of a Stable, Oxygen- Bridged, 1:2 Donor-Acceptor Polynuclear Anion". ChemInform. 28 (2): no. doi:10.1002/chin.199702025. Full article at Eur. J. Solid State Inorg. Chem. 33 (1996) 9, 865–877
  49. Olah, Georg; Oswald, Alexius; Kuhn, Stephan (4 August 1959). "Untersuchung organischer Phosphorverbindungen, III Darstellung von Difluorphosphorsäure- und von Difluorthiophosphorsäure-alkylamiden". Justus Liebigs Annalen der Chemie. 625 (1): 88–91. doi:10.1002/jlac.19596250111.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.