Drosophila testacea species group

The Drosophila testacea species group belongs to the Immigrans-tripunctata radiation of the subgenus Drosophila, and contains 4 species: Drosophila putrida, Drosophila neotestacea, Drosophila testacea, and Drosophila orientacea.[1] Testacea species are specialist mushroom-feeding flies, and can metabolize toxic compounds in Amanita mushrooms.[2] The Testacea species group is studied for its specialist ecology, population genetics, and bacterial endosymbionts. The North American species Drosophila neotestacea is perhaps the best-studied of the group for its interactions with parasitic wasps and nematodes, bacterial endosymbionts, and trypanosomatid parasites.[3][4][5] Of note, selfish X chromosomes (a form of meiotic drive) have been discovered in three of the four Testacea group species.[6][7]

Drosophila testacea species group
Drosophila neotestacea
Scientific classification
Kingdom:
Phylum:
Class:
Order:
Family:
Subfamily:
Genus:
Subgenus:
Species group:
Testacea
species

Testacea species are commonly found in association with members of the Drosophila Quinaria species group due to their shared mushroom-feeding life history.[8]

Systematics

The Testacea species group is a phylogenetically concise lineage consisting of 4 species. The closest outgroup of Testacea species is the Drosophila bizonata species group.[9][10]

 Drosophila quinaria species group

 Drosophila cardini species group

 Drosophila tripunctata species group

 Drosophila bizonata species group

 Drosophila putrida

 Drosophila neotestacea

 Drosophila orientacea

 Drosophila testacea

References

  1. Grimaldi, James, and Jaenike. 1992. Systematics and Modes of Reproductive Isolation in the Holarctic Drosophila testacea Species Group (Diptera: Drosophilidae). https://academic.oup.com/aesa/article/85/6/671/2759036
  2. Jaenike, 1978. https://www.jstor.org/stable/1938245
  3. Jaenike et al. 2010. http://science.sciencemag.org/content/329/5988/212
  4. Haselkorn and Jaenike, 2016. https://onlinelibrary.wiley.com/doi/full/10.1111/mec.13261
  5. Hamilton, Phineas T.; Votýpka, Jan; Dostálová, Anna; Yurchenko, Vyacheslav; Bird, Nathan H.; Lukeš, Julius; Lemaitre, Bruno; Perlman, Steve J. (2015). "Infection Dynamics and Immune Response in a Newly Described Drosophila-Trypanosomatid Association". mBio. 6 (5): e01356-15. doi:10.1128/mBio.01356-15. PMC 4600116. PMID 26374124.
  6. Pieper and Dyer. 2016. https://onlinelibrary.wiley.com/doi/full/10.1111/jeb.12948
  7. Keais et al. 2017. https://onlinelibrary.wiley.com/doi/full/10.1111/jeb.13089
  8. Scott Chialvo, C. H.; White, B. E.; Reed, L. K.; Dyer, K. A. (January 2019). "A phylogenetic examination of host use evolution in the quinaria and testacea groups of Drosophila". Molecular Phylogenetics and Evolution. 130: 233–243. doi:10.1016/j.ympev.2018.10.027. PMC 6327841. PMID 30366088.
  9. Perlman, Steve J.; Jaenike, John (2003). "Infection Success in Novel Hosts: An Experimental and Phylogenetic Study of Drosophila-Parasitic Nematodes". Evolution. 57 (3): 544–57. doi:10.1111/j.0014-3820.2003.tb01546.x. PMID 12703944. S2CID 20459223.
  10. Scott Chialvo, C. H.; White, B. E.; Reed, L. K.; Dyer, K. A. (January 2019). "A phylogenetic examination of host use evolution in the quinaria and testacea groups of Drosophila". Molecular Phylogenetics and Evolution. 130: 233–243. doi:10.1016/j.ympev.2018.10.027. PMC 6327841. PMID 30366088.

Further reading


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.