Father of quantum mechanics

Father of quantum mechanics is a moniker applied to several individuals. Strictly speaking, Max Planck, Werner Heisenberg, and Erwin Schrödinger have equal claim and recognition. Max Planck unwittingly originated the vast field of quantum theory with his famous Planck Equation and is regarded as the 'true but reluctant father' of the modern concept of 'quantum of energy' that underlies all quantum phenomena.[1][2][3][4] However, according to acclaimed science historian Thomas Kuhn, head of applied physics Douglas A. Stone, cognitive scientist Douglas Hofstadter and many others, including Planck himself, it was Albert Einstein who quantized the radiation field by arguing that light itself was quantized - as opposed to Planck's much more ambiguous argument that quantization only occurred at the sites of emission and absorption. Kuhn, Stone and Hofstadter all argue that it was Einstein, not Planck, who quantized the radiation field. For this reason, and his many other seminal contributions to quantum theory, Einstein is regarded by many science historians as the father of quantum theory.[5][6][7][8]

Background

Planck introduced the concept of a hypothetical energy quantum to explain black-body radiation spectra in 1900.[9][10][11]

Albert Einstein cemented the utility of quantum theory through explanation of the photoelectric effect in a 1905 paper.[12]

The fundamental concept that the energy E of any system that absorbs or emits electromagnetic radiation of frequency ν is an integer multiple of an energy quantum E = inspired Erwin Schrödinger to quantize the classical wave equation. Schrödinger arrived at what is now known as the Schrödinger equation published in 1926.[13][14] This formulation is known as wave mechanics, an alternative formulation of quantum theory by Werner Heisenberg was published in a 1925 paper.[15] Heisenberg's work is also referred to as the matrix mechanics formulation of quantum physics for which he was awarded the 1932 Nobel Prize in Physics. As far as attribution for Quantum Mechanics, Heisenberg's Nobel Prize citation awards Heisenberg the credit "for the creation of quantum mechanics.[16]

Additional fine-tuning by Max Born provided the practical way of interpreting probabilities in quantum theory.

References

  1. "The Quantised World". www.nobelprize.org. Retrieved 2018-05-24.
  2. Creagh, Sunanda. "Hitler's letter to the father of quantum mechanics". The Conversation. Retrieved 2018-05-24.
  3. "The birth of quantum theory - Dec 14, 1900 - HISTORY.com". HISTORY.com. Retrieved 2018-05-24.
  4. "Quantum Theory :The Great Debate". American Museum of Natural History. Retrieved May 24, 2018.
  5. "Q&A with A. Douglas Stone". www.press.princeton.edu. Retrieved 2019-07-07.
  6. "Thomas Kuhn". www.plato.stanford.edu. Retrieved 2019-07-07.
  7. "Hofstadter on Einstein". www.prelectur.stanford.edu. Retrieved 2019-07-07.
  8. "Why Einstein?". www.specialcollections.vassar.edu. Retrieved 2019-07-07.
  9. Planck, M. (1900a). "Über eine Verbesserung der Wienschen Spektralgleichung". Verhandlungen der Deutschen Physikalischen Gesellschaft. 2: 202–204. Translated in ter Haar, D. (1967). "On an Improvement of Wien's Equation for the Spectrum" (PDF). The Old Quantum Theory. Pergamon Press. pp. 79–81. LCCN 66029628.
  10. Planck, M. (1901). "Über das Gesetz der Energieverteilung im Normalspectrum". Annalen der Physik (in German). 4 (3): 553–563. Bibcode:1901AnP...309..553P. doi:10.1002/andp.19013090310. English translation
  11. Planck, M. (1920). "Max Planck's Nobel Lecture". nobelprize.org.
  12. Einstein, Albert (1905a) [Manuscript received: 18 March 1905], written at Berne, Switzerland, "Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt" [On a Heuristic Viewpoint Concerning the Production and Transformation of Light] (PDF), Annalen der Physik (Berlin) (in German), Hoboken, NJ (published 10 March 2006), 322 (6), pp. 132–148, Bibcode:1905AnP...322..132E, doi:10.1002/andp.19053220607 via Wiley Online Library
  13. Erwin Schrödinger (1982). Collected Papers on Wave Mechanics: Third Edition. American Mathematical Soc. ISBN 978-0-8218-3524-1.
  14. Schrödinger, E. (1926). "Quantisierung als Eigenwertproblem; von Erwin Schrödinger". Annalen der Physik. 384: 361–377. Bibcode:1926AnP...384..361S. doi:10.1002/andp.19263840404.
  15. Werner Heisenberg (1925). "Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen". Zeitschrift für Physik. 33 (1): 879–893. Bibcode:1925ZPhy...33..879H. doi:10.1007/BF01328377. S2CID 186238950.
  16. "The Nobel Prize in Physics 1932". Nobelprize.org. Retrieved 2018-05-23.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.