Galactic Center

The Galactic Center (or Galactic Centre) is the rotational center of the Milky Way galaxy; it is a supermassive black hole of 4.100 ± 0.034 million solar masses, which powers the compact radio source Sagittarius A*.[1][2][3][4][5][6][7] It is 8.178 ± 0.035 kiloparsecs (26,670 ± 110 ly) away from Earth[8] in the direction of the constellations Sagittarius, Ophiuchus, and Scorpius where the Milky Way appears brightest.

The Galactic Center, as seen by one of the 2MASS infrared telescopes, is located in the bright upper left portion of the image.

There are around 10 million stars within one parsec of the Galactic Center, dominated by red giants, with a significant population of massive supergiants and Wolf-Rayet stars from star formation in the region around 1 million years ago.

Discovery

Because of interstellar dust along the line of sight, the Galactic Center cannot be studied at visible, ultraviolet, or soft (low-energy) X-ray wavelengths. The available information about the Galactic Center comes from observations at gamma ray, hard (high-energy) X-ray, infrared, submillimetre, and radio wavelengths.

Immanuel Kant stated in General Natural History and Theory of the Heavens (1755) that a large star was at the center of the Milky Way Galaxy, and that Sirius might be the star.[9] Harlow Shapley stated in 1918 that the halo of globular clusters surrounding the Milky Way seemed to be centered on the star swarms in the constellation of Sagittarius, but the dark molecular clouds in the area blocked the view for optical astronomy.[10] In the early 1940s Walter Baade at Mount Wilson Observatory took advantage of wartime blackout conditions in nearby Los Angeles to conduct a search for the center with the 100-inch (250 cm) Hooker Telescope. He found that near the star Alnasl (Gamma Sagittarii) there is a one-degree-wide void in the interstellar dust lanes, which provides a relatively clear view of the swarms of stars around the nucleus of our Milky Way Galaxy.[11] This gap has been known as Baade's Window ever since.[12]

At Dover Heights in Sydney, Australia, a team of radio astronomers from the Division of Radiophysics at the CSIRO, led by Joseph Lade Pawsey, used 'sea interferometry' to discover some of the first interstellar and intergalactic radio sources, including Taurus A, Virgo A and Centaurus A. By 1954 they had built an 80-foot (24 m) fixed dish antenna and used it to make a detailed study of an extended, extremely powerful belt of radio emission that was detected in Sagittarius. They named an intense point-source near the center of this belt Sagittarius A, and realised that it was located at the very center of our Galaxy, despite being some 32 degrees south-west of the conjectured galactic center of the time.[13]

In 1958 the International Astronomical Union (IAU) decided to adopt the position of Sagittarius A as the true zero co-ordinate point for the system of galactic latitude and longitude.[14] In the equatorial coordinate system the location is: RA 17h 45m 40.04s, Dec −29° 00 28.1 (J2000 epoch).

Distance to the Galactic Center

The exact distance between the Solar System and the Galactic Center is not certain,[15] although estimates since 2000 have remained within the range 24–28.4 kilolight-years (7.4–8.7 kiloparsecs).[16] The latest estimates from geometric-based methods and standard candles yield the following distances to the Galactic Center:

  • 7.4±0.2(stat) ±0.2(syst) or 7.4±0.3 kpc (≈24±1 kly)[16]
  • 7.62±0.32 kpc (≈24.8±1 kly)[17]
  • 7.7±0.7 kpc (≈25.1±2.3 kly)[18]
  • 7.94 or 8.0±0.5 kpc (≈26±1.6 kly)[19][20][21]
  • 7.98±0.15(stat) ±0.20(syst) or 8.0±0.25 kpc (≈26±0.8 kly)[22]
  • 8.33±0.35 kpc (≈27±1.1 kly)[3]
  • 8.0±0.3 kpc (≈25.96±0.98 kly)[23]
  • 8.7±0.5 kpc (≈28.4±1.6 kly)[24]
  • 8.178±0.013(stat) ±0.022(syst) (26.67±0.1 kly)[8]

An accurate determination of the distance to the Galactic Center as established from variable stars (e.g. RR Lyrae variables) or standard candles (e.g. red-clump stars) is hindered by countless effects, which include: an ambiguous reddening law; a bias for smaller values of the distance to the Galactic Center because of a preferential sampling of stars toward the near side of the Galactic bulge owing to interstellar extinction; and an uncertainty in characterizing how a mean distance to a group of variable stars found in the direction of the Galactic bulge relates to the distance to the Galactic Center.[25][26]

The nature of the Milky Way's bar, which extends across the Galactic Center, is also actively debated, with estimates for its half-length and orientation spanning between 1–5 kpc (short or a long bar) and 10–50°.[24][25][27] Certain authors advocate that the Milky Way features two distinct bars, one nestled within the other.[28] The bar is delineated by red-clump stars (see also red giant); however, RR Lyrae variables do not trace a prominent Galactic bar.[25][29][30] The bar may be surrounded by a ring called the 5-kpc ring that contains a large fraction of the molecular hydrogen present in the Milky Way, and most of the Milky Way's star formation activity. Viewed from the Andromeda Galaxy, it would be the brightest feature of the Milky Way.[31]

Supermassive black hole

There is a supermassive black hole in the bright white area to the right of the center of the image. This composite photograph covers about half of a degree.

The complex astronomical radio source Sagittarius A appears to be located almost exactly at the Galactic Center and contains an intense compact radio source, Sagittarius A*, which coincides with a supermassive black hole at the center of the Milky Way. Accretion of gas onto the black hole, probably involving an accretion disk around it, would release energy to power the radio source, itself much larger than the black hole. The latter is too small to see with present instruments.

Artist impression of a supermassive black hole at the center of a galaxy[1]

A study in 2008 which linked radio telescopes in Hawaii, Arizona and California (Very Long Baseline Interferometry) measured the diameter of Sagittarius A* to be 44 million kilometers (0.3 AU).[2][32] For comparison, the radius of Earth's orbit around the Sun is about 150 million kilometers (1.0 AU), whereas the distance of Mercury from the Sun at closest approach (perihelion) is 46 million kilometers (0.3 AU). Thus, the diameter of the radio source is slightly less than the distance from Mercury to the Sun.

Scientists at the Max Planck Institute for Extraterrestrial Physics in Germany using Chilean telescopes have confirmed the existence of a supermassive black hole at the Galactic Center, on the order of 4.3 million solar masses.[3]

On 5 January 2015, NASA reported observing an X-ray flare 400 times brighter than usual, a record-breaker, from Sagittarius A*. The unusual event may have been caused by the breaking apart of an asteroid falling into the black hole or by the entanglement of magnetic field lines within gas flowing into Sagittarius A*, according to astronomers.[33]

Stellar population

Galactic Center of the Milky Way and a meteor

The central cubic parsec around Sagittarius A* contains around 10 million stars.[34] Although most of them are old red giant stars, the Galactic Center is also rich in massive stars. More than 100 OB and Wolf–Rayet stars have been identified there so far.[35] They seem to have all been formed in a single star formation event a few million years ago. The existence of these relatively young stars was a surprise to experts, who expected the tidal forces from the central black hole to prevent their formation. This paradox of youth is even stronger for stars that are on very tight orbits around Sagittarius A*, such as S2 and S0-102. The scenarios invoked to explain this formation involve either star formation in a massive star cluster offset from the Galactic Center that would have migrated to its current location once formed, or star formation within a massive, compact gas accretion disk around the central black-hole. Current evidence favors the latter theory, as formation through a large accretion disk is more likely to lead to the observed discrete edge of the young stellar cluster at roughly 0.5 parsec.[36] Most of these 100 young, massive stars seem to be concentrated within one or two disks, rather than randomly distributed within the central parsec.[37][38] This observation however does not allow definite conclusions to be drawn at this point.

Star formation does not seem to be occurring currently at the Galactic Center, although the Circumnuclear Disk of molecular gas that orbits the Galactic Center at two parsecs seems a fairly favorable site for star formation. Work presented in 2002 by Antony Stark and Chris Martin mapping the gas density in a 400-light-year region around the Galactic Center has revealed an accumulating ring with a mass several million times that of the Sun and near the critical density for star formation. They predict that in approximately 200 million years there will be an episode of starburst in the Galactic Center, with many stars forming rapidly and undergoing supernovae at a hundred times the current rate. This starburst may also be accompanied by the formation of galactic relativistic jets as matter falls into the central black hole. It is thought that the Milky Way undergoes a starburst of this sort every 500 million years.

In addition to the paradox of youth, there is also a "conundrum of old age" associated with the distribution of the old stars at the Galactic Center. Theoretical models had predicted that the old stars—which far outnumber young stars—should have a steeply-rising density near the black hole, a so-called Bahcall–Wolf cusp. Instead, it was discovered in 2009 that the density of the old stars peaks at a distance of roughly 0.5 parsec from Sgr A*, then falls inward: instead of a dense cluster, there is a "hole", or core, around the black hole.[39] Several suggestions have been put forward to explain this puzzling observation, but none is completely satisfactory.[40][41] For instance, although the black hole would eat stars near it, creating a region of low density, this region would be much smaller than a parsec. Because the observed stars are a fraction of the total number, it is theoretically possible that the overall stellar distribution is different from what is observed, although no plausible models of this sort have been proposed yet.

Gamma- and X-ray emitting Fermi bubbles

Galactic gamma- and X-ray bubbles
Gamma- and X-ray bubbles at the Milky Way galaxy center: Top: illustration; Bottom: video.

In November 2010, it was announced that two large elliptical lobe structures of energetic plasma, termed "bubbles", which emit gamma- and X-rays, were detected astride the Milky Way galaxy's core.[45] These so-called "Fermi bubbles" extend up to about 25,000 light years above and below the galactic center.[45] The galaxy's diffuse gamma-ray fog hampered prior observations, but the discovery team led by D. Finkbeiner, building on research by G. Dobler, worked around this problem.[45] The 2014 Bruno Rossi Prize went to Tracy Slatyer, Douglas Finkbeiner, and Meng Su "for their discovery, in gamma rays, of the large unanticipated Galactic structure called the Fermi bubbles".[46]

The origin of the bubbles is being researched.[47][48] The bubbles are connected and seemingly coupled, via energy transport, to the galactic core by columnar structures of energetic plasma dubbed "chimneys".[49] They were seen in visible light[50] and optical measurements were made for the first time in 2020.[51]

See also

Notes and references

  1. "ALMA Reveals Intense Magnetic Field Close to Supermassive Black Hole". ESO Press Release. European Southern Observatory. Retrieved 21 April 2015.
  2. Doeleman, Sheperd S.; et al. (2008). "Event-horizon-scale structure in the supermassive black hole candidate at that Galactic Centre". Nature. 455 (7209): 78–80. arXiv:0809.2442. Bibcode:2008Natur.455...78D. doi:10.1038/nature07245. PMID 18769434. S2CID 4424735.
  3. Gillessen, S.; Eisenhauer; Trippe; Alexander; Genzel; Martins; Ott (2009). "Monitoring Stellar Orbits Around the Massive Black Hole in the Galactic Center". The Astrophysical Journal. 692 (2): 1075–1109. arXiv:0810.4674. Bibcode:2009ApJ...692.1075G. doi:10.1088/0004-637X/692/2/1075. S2CID 1431308.
  4. "Scientists find proof a black hole is lurking at the centre of our galaxy". Metro. 31 October 2018. Retrieved 31 October 2018.
  5. "A 'mind-boggling' telescope observation has revealed the point of no return for our galaxy's monster black hole". The Middletown Press. 31 October 2018. Retrieved 31 October 2018.
  6. Plait, Phil (8 November 2018). "Astronomers see material orbiting a black hole *right* at the edge of forever". Syfy Wire. Archived from the original on 10 November 2018.
  7. Henderson, Mark (9 December 2009). "Astronomers confirm black hole at the heart of the Milky Way". Times Online. Archived from the original on 16 December 2008. Retrieved 6 June 2019.
  8. The GRAVITY collaboration (April 2019). "A geometric distance measurement to the Galactic center black hole with 0.3% uncertainty". Astronomy & Astrophysics. 625: L10. arXiv:1904.05721. Bibcode:2019A&A...625L..10G. doi:10.1051/0004-6361/201935656. S2CID 119190574.CS1 maint: uses authors parameter (link)
  9. Ley, Willy (August 1965). "The Galactic Giants". For Your Information. Galaxy Science Fiction. pp. 130–142.
  10. Shapley, H (1918). "Studies based on the colors and magnitudes in stellar clusters. VII. The distances, distribution in space, and dimensions of 69 globular clusters". The Astrophysical Journal. 48: 154. Bibcode:1918ApJ....48..154S. doi:10.1086/142423.
  11. Baade, W (1946). "A Search for the Nucleus of Our Galaxy". Publications of the Astronomical Society of the Pacific. 58 (343): 249. Bibcode:1946PASP...58..249B. doi:10.1086/125835.
  12. Ng, Y. K; Bertelli, G; Chiosi, C; Bressan, A (1996). "The galactic structure towards the Galactic Center. III. A study of Baade's Window: Discovery of the bar population?". Astronomy and Astrophysics. 310: 771. Bibcode:1996A&A...310..771N.
  13. Pawsey, J. L (1955). "A Catalogue of Reliably Known Discrete Sources of Cosmic Radio Waves". The Astrophysical Journal. 121: 1. Bibcode:1955ApJ...121....1P. doi:10.1086/145957.
  14. Blaauw, A.; Gum, C.S.; Pawsey, J.L.; Westerhout, G. (1960). "The new IAU system of galactic coordinates (1958 revision)". Monthly Notices of the Royal Astronomical Society. 121 (2): 123–131. Bibcode:1960MNRAS.121..123B. doi:10.1093/mnras/121.2.123.
  15. Malkin, Zinovy M. (February 2013). "Analysis of Determinations of the Distance between the Sun and the Galactic Center". Astronomy Reports. 57 (2): 128–133. arXiv:1301.7011. Bibcode:2013ARep...57..128M. CiteSeerX 10.1.1.766.631. doi:10.1134/S1063772913020078. S2CID 55662712. Russian original Малкин, З. М. (2013). "Об определении расстояния от Солнца до центра Галактики". Astronomicheskii Zhurnal (in Russian). 90 (2): 152–157. doi:10.7868/S0004629913020072.
  16. Francis, Charles; Anderson, Erik (June 2014). "Two estimates of the distance to the Galactic Centre". Monthly Notices of the Royal Astronomical Society. 441 (2): 1105–1114. arXiv:1309.2629. Bibcode:2014MNRAS.441.1105F. doi:10.1093/mnras/stu631. S2CID 119235554.
  17. Eisenhauer, F.; Genzel, R.; Alexander, T.; Abuter, R.; Paumard, T.; Ott, T.; Gilbert, A.; Gillessen, S.; Horrobin, M.; Trippe, S.; Bonnet, H.; Dumas, C.; Hubin, N.; Kaufer, A.; Kissler-Patig, M.; Monnet, G.; Ströbele, S.; Szeifert, T.; Eckart, A.; Schödel, R.; Zucker, S. (2005). "SINFONI in the Galactic Center: Young Stars and Infrared Flares in the Central Light-Month". The Astrophysical Journal. 628 (1): 246–259. arXiv:astro-ph/0502129. Bibcode:2005ApJ...628..246E. doi:10.1086/430667.
  18. Majaess, D.J.; Turner, D.G.; Lane, D.J. (2009). "Characteristics of the Galaxy according to Cepheids". MNRAS. 398 (1): 263–270. arXiv:0903.4206. Bibcode:2009MNRAS.398..263M. doi:10.1111/j.1365-2966.2009.15096.x. S2CID 14316644.
  19. Reid, Mark J. (1993). "The distance to the center of the Galaxy". Annual Review of Astronomy and Astrophysics. 31 (1): 345–372. Bibcode:1993ARA&A..31..345R. doi:10.1146/annurev.aa.31.090193.002021.
  20. Eisenhauer, F.; Schödel, R.; Genzel, R.; Ott, T.; Tecza, M.; Abuter, R.; Eckart, A.; Alexander, T. (2003). "A Geometric Determination of the Distance to the Galactic Center". The Astrophysical Journal. 597 (2): L121–L124. arXiv:astro-ph/0306220. Bibcode:2003ApJ...597L.121E. doi:10.1086/380188. S2CID 16425333.
  21. Horrobin, M.; Eisenhauer, F.; Tecza, M.; Thatte, N.; Genzel, R.; Abuter, R.; Iserlohe, C.; Schreiber, J.; Schegerer, A.; Lutz, D.; Ott, T.; Schödel, R. (2004). "First results from SPIFFI. I: The Galactic Center" (PDF). Astronomische Nachrichten. 325 (2): 120–123. Bibcode:2004AN....325...88H. doi:10.1002/asna.200310181. Archived from the original (PDF) on 21 June 2007.
  22. Malkin, Zinovy (2012). "The current best estimate of the Galactocentric distance of the Sun based on comparison of different statistical techniques". arXiv:1202.6128 [astro-ph.GA].
  23. Camarillo, T.; Mathur; Mitchell; Ratra (2018). "Median Statistics Estimate of the Distance to the Galactic Center". Publications of the Astronomical Society of the Pacific. 130 (984): 024101. arXiv:1708.01310. Bibcode:2018PASP..130b4101C. doi:10.1088/1538-3873/aa9b26. S2CID 118936491.
  24. Vanhollebeke, E.; Groenewegen, M. A. T.; Girardi, L. (April 2009). "Stellar populations in the Galactic bulge. Modelling the Galactic bulge with TRILEGAL". Astronomy and Astrophysics. 498 (1): 95–107. arXiv:0903.0946. Bibcode:2009A&A...498...95V. doi:10.1051/0004-6361/20078472.
  25. Majaess, D (March 2010). "Concerning the Distance to the Center of the Milky Way and Its Structure". Acta Astronomica. 60 (1): 55–74. arXiv:1002.2743. Bibcode:2010AcA....60...55M.
  26. Vovk, Olga (27 April 2011). "Milky Way: Distance to the Galactic Centre". Universe at a glance (blog). Retrieved 23 March 2019.
  27. Cabrera-Lavers, A.; González-Fernández, C.; Garzón, F.; Hammersley, P. L.; López-CorredoiRA, M. (December 2008). "The long Galactic bar as seen by UKIDSS Galactic plane survey". Astronomy and Astrophysics. 491 (3): 781–787. arXiv:0809.3174. Bibcode:2008A&A...491..781C. doi:10.1051/0004-6361:200810720. S2CID 15040792.
  28. Nishiyama, Shogo; Nagata, Tetsuya; Baba, Daisuke; Haba, Yasuaki; Kadowaki, Ryota; Kato, Daisuke; Kurita, Mikio; Nagashima, Chie; Nagayama, Takahiro; Murai, Yuka; Nakajima, Yasushi; TamuRA, Motohide; Nakaya, Hidehiko; Sugitani, Koji; Naoi, Takahiro; Matsunaga, Noriyuki; Tanabé, Toshihiko; Kusakabe, Nobuhiko; Sato, Shuji (March 2005). "A Distinct Structure inside the Galactic Bar". The Astrophysical Journal. 621 (2): L105–L108. arXiv:astro-ph/0502058. Bibcode:2005ApJ...621L.105N. doi:10.1086/429291. S2CID 399710.
  29. Alcock, C.; Allsman, R. A.; Alves, D. R.; Axelrod, T. S.; Becker, A. C.; Basu, A.; Baskett, L.; Bennett, D. P.; Cook, K. H.; Freeman, K. C.; Griest, K.; Guern, J. A.; Lehner, M. J.; Marshall, S. L.; Minniti, D.; Peterson, B. A.; Pratt, M. R.; Quinn, P. J.; Rodgers, A. W.; Stubbs, C. W.; Sutherland, W.; Vandehei, T.; Welch, D. L. (January 1998). "The RR Lyrae Population of the Galactic Bulge from the MACHO Database: Mean Colors and Magnitudes". The Astrophysical Journal. 492 (1): 190–199. arXiv:astro-ph/9706292. Bibcode:1998ApJ...492..190A. doi:10.1086/305017. S2CID 16244436.
  30. Kunder, Andrea; Chaboyer, Brian (December 2008). "Metallicity Analysis of MACHO Galactic Bulge RR0 Lyrae Stars from their Light Curves". The Astronomical Journal. 136 (6): 2441–2452. arXiv:0809.1645. Bibcode:2008AJ....136.2441K. doi:10.1088/0004-6256/136/6/2441. S2CID 16046532.
  31. Staff (12 September 2005). "Introduction: Galactic Ring Survey". Boston University. Retrieved 10 May 2007.
  32. Reynolds, Christopher S. (2008). "Bringing black holes into focus". Nature. 455 (7209): 39–40. Bibcode:2008Natur.455...39R. doi:10.1038/455039a. PMID 18769426. S2CID 205040663.
  33. Chou, Felicia; Anderson, Janet; Watzke, Megan (5 January 2015). "Release 15-001 – NASA's Chandra Detects Record-Breaking Outburst from Milky Way's Black Hole". NASA.
  34. "Lecture 31: The Center of Our Galaxy".
  35. Mauerhan, J. C.; Cotera, A.; Dong, H. (2010). "Isolated Wolf-Rayet Stars and O Supergiants in the Galactic Center Region Identified Via Paschen-α Excess". The Astrophysical Journal. 725 (1): 188–199. arXiv:1009.2769. Bibcode:2010ApJ...725..188M. doi:10.1088/0004-637X/725/1/188. S2CID 20968628.
  36. Støstad, M.; Do, T.; Murray, N.; Lu, J.R.; Yelda, S.; Ghez, A. (2015). "Mapping the Outer Edge of the Young Stellar Cluster in the Galactic Center". The Astrophysical Journal. 808 (2): 106. arXiv:1504.07239. Bibcode:2015ApJ...108..106S. doi:10.1088/0004-637X/808/2/106. S2CID 118579717.
  37. "UCLA Galactic Center Group".
  38. "Galactic Center".
  39. Buchholz, R. M.; Schödel, R.; Eckart, A. (May 2009). "Composition of the galactic center star cluster: Population analysis from adaptive optics narrow band spectral energy distributions". Astronomy and Astrophysics. 499 (2): 483–501. arXiv:0903.2135. Bibcode:2009A&A...499..483B. doi:10.1051/0004-6361/200811497. S2CID 5221750.
  40. Merritt, David (May 2011). Morris, Mark; Wang, Daniel Q.; Yuan, Feng (eds.). "Dynamical Models of the Galactic Center". The Galactic Center: A Window to the Nuclear Environment of Disk Galaxies. The Galactic Center: A Window on the Nuclear Environment of Disk Galaxies. San Francisco. 439: 142. arXiv:1001.5435. Bibcode:2011ASPC..439..142M.
  41. Chown, Marcus (September 2010). "Something's been eating the stars". New Scientist. 207 (2778): 30–33. Bibcode:2010NewSc.207...30M. doi:10.1016/S0262-4079(10)62278-6.
  42. "Lights out in the galactic centre". www.eso.org. Retrieved 30 April 2018.
  43. "Hubble captures glittering crowded hub of our Milky Way". www.spacetelescope.org. Retrieved 15 January 2018.
  44. "Hubble Spots White Dwarfs in Milky Way's Central Hub". Retrieved 9 November 2015.
  45. Aguilar, David A.; Pulliam, Christine (9 November 2010). "Astronomers Find Giant, Previously Unseen Structure in our Galaxy". Harvard-Smithsonian Center for Astrophysics. Release No. 2010-22.
  46. "2014 Rossi prize awarded to Douglas Finkbeiner, Tracy Slatyer, and Meng Su". Harvard University. 8 January 2014.
  47. Yang, H.-Y. K.; Ruszkowski, M.; Zweibel, E. G. (12 February 2018). "Unveiling the Origin of the Fermi Bubbles". Galaxies. 6 (29): 29. arXiv:1802.03890. Bibcode:2018Galax...6...29Y. doi:10.3390/galaxies6010029. S2CID 56443272.
  48. Liu Jia, Researchers reveal common origin of Fermi bubbles and galactic center X-ray outflows, phys.org
  49. Chernyakova, Masha (20 March 2019). "X-ray chimneys in the Galactic Centre". Nature. Springer Nature Publishing. 567 (7748): 318–320. Bibcode:2019Natur.567..318C. doi:10.1038/d41586-019-00811-9. PMID 30894730.
  50. Krishnarao, Dhanesh; Benjamin, Robert A.; Haffner, L. Matthew (29 May 2020). "Discovery of High-Velocity H-Alpha Above Galactic Center: Testing Models of the Fermi Bubble". arXiv:2006.00010. doi:10.3847/2041-8213/aba8f0. S2CID 220969030. Cite journal requires |journal= (help)
  51. "236th Meeting of the American Astronomical Society". www.abstractsonline.com. Retrieved 8 June 2020.

Further reading

  • Eckart, A.; Schödel, R.; Straubmeier, C. (2005). The Black Hole at the Center of the Milky Way. London: Imperial College Press. ISBN 978-1-86094-567-0.
  • Melia, Fulvio (2003). The Black Hole in the Center of Our Galaxy. Princeton: Princeton University Press. ISBN 978-0-691-09505-9.
  • Melia, Fulvio (2007). The Galactic Supermassive Black Hole. Princeton: Princeton University Press. ISBN 978-0-691-13129-0.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.