Hoag's Object

Hoag's Object is a non-typical galaxy of the type known as a ring galaxy.[4] The galaxy is named after Arthur Hoag who discovered it in 1950 and identified it as either a planetary nebula or a peculiar galaxy[5] with eight billion stars, spanning roughly 100,000 light years.[6]

Hoag's Object
Hoag's Object, taken by the Hubble Space Telescope in July 2001
Observation data (J2000 epoch)
ConstellationSerpens Caput
Right ascension15h 17m 14.4s[1]
Declination+21° 35 08[1]
Redshift12740±50 km/s[1][2]
Distance612.8±9.4 Mly (187.9±2.9 Mpc)[2][a]
Apparent magnitude (B)16.2[1]
Characteristics
Type(RP)E0 or (RP)SA0/a[3]
Size121±4 kly in diameter[2]
Apparent size (V)0.28′ × 0.28′[1]
Notable featuresRing galaxy
Other designations
PGC 54559,[1] PRC D-51[1]

Characteristics

A nearly perfect ring of young hot blue stars circles the older yellow nucleus of this ring galaxy c. 600 million light-years away in the constellation Serpens. The diameter of the 6 arcsecond inner core of the galaxy is about 17±0.7 kly (5.3±0.2 kpc) while the surrounding ring has an inner 28″ diameter of 75±3 kly (24.8±1.1 kpc) and an outer 45″ diameter of 121±4 kly (39.9±1.7 kpc).[2] The galaxy is estimated to have a mass of 700 billion suns.[7] By way of comparison, the Milky Way galaxy has an estimated diameter of 150-200 kly and consists of between 100 and 500 billion stars and a mass of around 1.54 trillion suns. [8] [9]

The gap separating the two stellar populations may contain some star clusters that are almost too faint to see. Though ring galaxies are rare, another more distant ring galaxy (SDSS J151713.93+213516.8)[10] can be seen through Hoag's Object, between the nucleus and the outer ring of the galaxy, at roughly the one o'clock position in the image shown here.

Noah Brosch and colleagues showed that the luminous ring lies at the inner edge of a much larger neutral hydrogen ring.[11]

History and formation

Even though Hoag's Object was clearly shown on the Palomar Star Survey, it was not included in either the Morphological Catalogue of Galaxies, the Catalogue of Galaxies and Clusters of Galaxies, or the catalogue of galactic planetary nebulae.[2]

In the initial announcement of his discovery, Hoag proposed the hypothesis that the visible ring was a product of gravitational lensing. This idea was later discarded because the nucleus and the ring have the same redshift, and because more advanced telescopes revealed the knotty structure of the ring, something that would not be visible if the ring were the product of gravitational lensing.[12]

Many of the details of the galaxy remain a mystery, foremost of which is how it formed. So-called "classic" ring galaxies are generally formed by the collision of a small galaxy with a larger disk-shaped galaxy. This collision produces a density wave in the disk that leads to a characteristic ring-like appearance. Such an event would have happened at least 2–3 billion years in the past,[12] and may have resembled the processes that form polar-ring galaxies. However, there is no sign of any second galaxy that would have acted as the "bullet", and the likely older core of Hoag's Object has a very low velocity relative to the ring, making the typical formation hypothesis quite unlikely.[12] Observations with one of the most sensitive telescopes have also failed to uncover any faint galaxy fragments that should be discoverable in a collision scenario. However, a team of scientists that analyze the galaxy admits that "if the carnage happened more than 3 billion years ago, there might not be any detritus left to see."[13]

Noah Brosch suggested that Hoag's Object might be a product of an extreme "bar instability" that occurred a few billion years ago in a barred spiral galaxy.[14] Schweizer et al[12] claim that this is an unlikely hypothesis because the nucleus of the object is spheroidal, whereas the nucleus of a barred spiral galaxy is disc-shaped, among other reasons. However, they admit evidence is somewhat thin for this particular dispute to be settled satisfactorily.

A few other galaxies share the primary characteristics of Hoag's Object, including a bright detached ring of stars, but their centers are elongated or barred, and they may exhibit some spiral structure. While none match Hoag's Object in symmetry, this handful of galaxies are known to some as Hoag-type galaxies.[15][16]

Notes

^ 1974 O'Connell paper[2] assumes a Hubble constant of 75; this figure adjusts for 2013's 67.8±0.77 (km/s)/Mpc.

References

  1. "NED results for Hoag's Object". NASA/IPAC Extragalactic Database. Retrieved 2016-06-28.
  2. R.W. O'Connell; J.D. Scargle; W.L.W. Sargent (1974). "The Nature of Hoag's Object". Astrophysical Journal. 191: 61–62. Bibcode:1974ApJ...191...61O. doi:10.1086/152940.
  3. Buta, Ronald J. (2017). "Galactic rings revisited - I. CVRHS classifications of 3962 ringed galaxies from the Galaxy Zoo 2 Database". Monthly Notices of the Royal Astronomical Society. 471 (4): 4027. arXiv:1707.06589. Bibcode:2017MNRAS.471.4027B. doi:10.1093/mnras/stx1829.
  4. Specktor, Brandon (3 December 2019). "Hoag's Object Is a Galaxy Within a Galaxy Within a Galaxy (and Nobody Knows Why)". Live Science. Retrieved 3 December 2019.
  5. A.A. Hoag (1950). "A peculiar object in Serpens". Astronomical Journal. 55: 170. Bibcode:1950AJ.....55Q.170H. doi:10.1086/106427.
  6. "A galactic doughnut". Cosmos Magazine. Retrieved 2019-10-31.
  7. Schweizer, Francois; Ford, W. Kent; Jedrzejewski, Robert; Giovanelli, Riccardo (1987). "The Structure and Evolution of Hoag's Object". The Astrophysical Journal. 320: 454. Bibcode:1987ApJ...320..454S. doi:10.1086/165562.
  8. https://www.theguardian.com/science/2019/mar/07/scientists-milky-way-weighs-galaxy-hubble-nasa
  9. https://www.nasa.gov/feature/goddard/2019/what-does-the-milky-way-weigh-hubble-and-gaia-investigate
  10. "SkyServer Object Explorer – SDSS J151713.93+213516.8".
  11. N. Brosch; I. Finkelman; T. Oosterloo; G. Jozsa; A. Moiseev (2013). "HI in HO: Hoag's Object revisited". Monthly Notices of the Royal Astronomical Society. 435 (1): 199–206. arXiv:1307.6368. Bibcode:2013MNRAS.435..475B. doi:10.1093/mnras/stt1348.
  12. F. Schweizer; W.K. Ford Jr.; R. Jederzejewski; R. Giovanelli (1987). "The structure and evolution of Hoag's object". Astrophysical Journal. 320: 454–463. Bibcode:1987ApJ...320..454S. doi:10.1086/165562.
  13. "Astrophile: Saturn-lookalike galaxy has a murky past". www.newscientist.com. Retrieved 2019-10-31.
  14. N. Brosch (1985). "The nature of Hoag's object – The perfect ringed galaxy". Astronomy and Astrophysics. 153 (1): 199–206. Bibcode:1985A&A...153..199B.
  15. at 10:26, Gavin Clarke (2017-01-04). "Astroboffins glimpse sighting of ultra-rare circular galaxy". www.theregister.co.uk. Retrieved 2019-10-31.
  16. Bob Berman (2015-11-13). "Weird Object: Hoags Object". Astronomy.com. Retrieved 2019-10-31.

See also

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.