Jürgen Neukirch

Jürgen Neukirch (24 July 1937 – 5 February 1997[1]) was a German mathematician known for his work on algebraic number theory.

Jürgen Neukirch
Born(1937-07-24)24 July 1937
Died5 February 1997(1997-02-05) (aged 59)
Alma materUniversity of Bonn
Scientific career
FieldsMathematics
InstitutionsUniversity of Regensburg
Doctoral advisorWolfgang Krull
Doctoral studentsPilar Bayer
Peter Schneider

Education and career

Neukirch received his diploma in mathematics in 1964 from the University of Bonn. For his Ph.D. thesis, written under the direction of Wolfgang Krull, he was awarded in 1965 the Felix-Hausdorff-Gedächtnis-Preis. He completed his habilitation one year later. From 1967 to 1969 he was guest professor at Queen's University in Kingston, Ontario and at the Massachusetts Institute of Technology in Cambridge, Massachusetts, after which he was a professor in Bonn. In 1971 he became a professor at the University of Regensburg.[2]

Contributions

He is known for his work on the embedding problem in algebraic number theory, the Báyer–Neukirch theorem on special values of L-functions, arithmetic Riemann existence theorems and the Neukirch–Uchida theorem in birational anabelian geometry. He gave a simple description of the reciprocity maps in local and global class field theory.

Books

Neukirch wrote three books on class field theory, algebraic number theory, and the cohomology of number fields:

  • Neukirch, Jürgen (1986). Class Field Theory. Grundlehren der Mathematischen Wissenschaften. 280. Berlin: Springer-Verlag. ISBN 3-540-15251-2.[3]
  • Neukirch, Jürgen (1999). Algebraic Number Theory. Grundlehren der Mathematischen Wissenschaften. 322. Springer-Verlag. ISBN 978-3-540-65399-8. Zbl 0956.11021.
  • Neukirch, Jürgen; Schmidt, Alexander; Wingberg, Kay (2008). Cohomology of Number Fields. Grundlehren der Mathematischen Wissenschaften. 323 (2nd ed.). Springer-Verlag. ISBN 978-3-540-37888-4. Zbl 1136.11001.[4]
  • Neukirch, Jürgen (2013). Class Field Theory — The Bonn Lectures. Springer. ISBN 978-3-642-35436-6.[5]

Notes

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.