Leap year starting on Monday

A leap year starting on Monday is any year with 366 days (i.e. it includes 29 February) that begins on Monday, 1 January, and ends on Tuesday, 31 December. Its dominical letters hence are GF. The most recent year of such kind was 1996 and the next one will be 2024 in the Gregorian calendar[1] or, likewise, 2008, and 2036 in the obsolete Julian calendar. Any leap year that starts on Monday, Wednesday or Thursday has two Friday the 13ths. This leap year contains two Friday the 13ths in September and December. Any common year starting on Tuesday shares this characteristic. In this leap year, the leap day is on a Thursday, U.S. Independence Day is on a Thursday, Thanksgiving is on its latest possible date, November 28, and Christmas is on a Wednesday.

Calendars

Calendar for any leap year starting on Monday,
presented as common in many English-speaking areas

010203040506
07080910111213
14151617181920
21222324252627
28293031  
 
010203
04050607080910
11121314151617
18192021222324
2526272829
 
0102
03040506070809
10111213141516
17181920212223
24252627282930
31  
010203040506
07080910111213
14151617181920
21222324252627
282930  
 
01020304
05060708091011
12131415161718
19202122232425
262728293031  
 
01
02030405060708
09101112131415
16171819202122
23242526272829
30  
010203040506
07080910111213
14151617181920
21222324252627
28293031  
 
010203
04050607080910
11121314151617
18192021222324
25262728293031
 
01020304050607
08091011121314
15161718192021
22232425262728
2930  
 
0102030405
06070809101112
13141516171819
20212223242526
2728293031  
 
0102
03040506070809
10111213141516
17181920212223
24252627282930
 
01020304050607
08091011121314
15161718192021
22232425262728
293031  
 

ISO 8601-conformant calendar with week numbers for
any leap year starting on Monday (dominical letter GF)

01020304050607
08091011121314
15161718192021
22232425262728
293031  
 
01020304
05060708091011
12131415161718
19202122232425
26272829  
 
010203
04050607080910
11121314151617
18192021222324
25262728293031
 
01020304050607
08091011121314
15161718192021
22232425262728
2930  
 
0102030405
06070809101112
13141516171819
20212223242526
2728293031  
 
0102
03040506070809
10111213141516
17181920212223
24252627282930
 
01020304050607
08091011121314
15161718192021
22232425262728
293031  
 
01020304
05060708091011
12131415161718
19202122232425
262728293031  
 
01
02030405060708
09101112131415
16171819202122
23242526272829
30  
010203040506
07080910111213
14151617181920
21222324252627
28293031  
 
010203
04050607080910
11121314151617
18192021222324
252627282930
 
01
02030405060708
09101112131415
16171819202122
23242526272829
3031  

Applicable years

Gregorian Calendar

Leap years that begin on Monday, along with those that start on Saturday or Thursday, occur least frequently: 13 out of 97 (≈ 13.402%) total leap years of the Gregorian calendar. Their overall occurrence is thus 3.25% (13 out of 400).

Gregorian leap years starting on Monday[1]
Decade 1st2nd3rd4th5th6th7th8th9th10th
17th century 162416521680
18th century 172017481776
19th century 181618441872
20th century 1912194019681996
21st century 202420522080
22nd century 212021482176
23rd century 221622442272
24th century 2312234023682396
25th century 242424522480
26th century 252025482576

Julian Calendar

Like all leap year types, the one starting with 1 January on a Monday occurs exactly once in a 28-year cycle in the Julian calendar, i.e. in 3.57% of years. As the Julian calendar repeats after 28 years that means it will also repeat after 700 years, i.e. 25 cycles. The year's position in the cycle is given by the formula ((year + 8) mod 28) + 1).

Julian leap years starting on Monday
Decade 1st2nd3rd4th5th6th7th8th9th10th
14th century 1308133613641392
15th century 142014481476
16th century 1504153215601588
17th century 1616164416721700
18th century 172817561784
19th century 1812184018681896
20th century 192419521980
21st century 2008203620642092
22nd century 212021482176

References

  1. Robert van Gent (2017). "The Mathematics of the ISO 8601 Calendar". Utrecht University, Department of Mathematics. Retrieved 20 July 2017.
  2. Robert van Gent (2017). "The Mathematics of the ISO 8601 Calendar". Utrecht University, Department of Mathematics. Retrieved 20 July 2017.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.