Lie algebroid

In mathematics, Lie algebroids serve the same role in the theory of Lie groupoids that Lie algebras serve in the theory of Lie groups: reducing global problems to infinitesimal ones.

Description

Just as a Lie groupoid can be thought of as a "Lie group with many objects", a Lie algebroid is like a "Lie algebra with many objects".

More precisely, a Lie algebroid is a triple consisting of a vector bundle over a manifold , together with a Lie bracket on its space of sections and a morphism of vector bundles called the anchor. Here is the tangent bundle of . The anchor and the bracket are to satisfy the Leibniz rule:

where and is the derivative of along the vector field . It follows that

for all .

Examples

  • Every Lie algebra is a Lie algebroid over the one point manifold.
  • The tangent bundle of a manifold is a Lie algebroid for the Lie bracket of vector fields and the identity of as an anchor.
  • Every integrable subbundle of the tangent bundle that is, one whose sections are closed under the Lie bracket also defines a Lie algebroid.
  • Every bundle of Lie algebras over a smooth manifold defines a Lie algebroid where the Lie bracket is defined pointwise and the anchor map is equal to zero.
  • To every Lie groupoid is associated a Lie algebroid, generalizing how a Lie algebra is associated to a Lie group (see also below). For example, the Lie algebroid comes from the pair groupoid whose objects are , with one isomorphism between each pair of objects. Unfortunately, going back from a Lie algebroid to a Lie groupoid is not always possible,[1] but every Lie algebroid gives a stacky Lie groupoid.[2][3]
  • Given the action of a Lie algebra g on a manifold M, the set of g -invariant vector fields on M is a Lie algebroid over the space of orbits of the action.
  • The Atiyah algebroid of a principal G-bundle P over a manifold M is a Lie algebroid with short exact sequence:
The space of sections of the Atiyah algebroid is the Lie algebra of G-invariant vector fields on P.
  • A Poisson Lie algebroid is associated to a Poisson manifold by taking E to be the cotangent bundle. The anchor map is given by the Poisson bivector. This can be seen in a Lie bialgebroid.

Lie algebroid associated to a Lie groupoid

To describe the construction let us fix some notation. G is the space of morphisms of the Lie groupoid, M the space of objects, the units and the target map.

the t-fiber tangent space. The Lie algebroid is now the vector bundle . This inherits a bracket from G, because we can identify the M-sections into A with left-invariant vector fields on G. The anchor map then is obtained as the derivation of the source map . Further these sections act on the smooth functions of M by identifying these with left-invariant functions on G.

As a more explicit example consider the Lie algebroid associated to the pair groupoid . The target map is and the units . The t-fibers are and therefore . So the Lie algebroid is the vector bundle . The extension of sections X into A to left-invariant vector fields on G is simply and the extension of a smooth function f from M to a left-invariant function on G is . Therefore, the bracket on A is just the Lie bracket of tangent vector fields and the anchor map is just the identity.

Of course you could do an analog construction with the source map and right-invariant vector fields/ functions. However you get an isomorphic Lie algebroid, with the explicit isomorphism , where is the inverse map.

Example

Consider the Lie groupoid

where the target map sends

Notice that there are two cases for the fibers of :

This demonstrating that there is a stabilizer of over the origin and stabilizer-free -orbits everywhere else. The tangent bundle over every is then trivial, hence the pullback is a trivial line bundle.

See also

References

  1. Crainic, Marius; Fernandes, Rui L. (2003). "Integrability of Lie brackets". Ann. of Math. 2. 157 (2): 575–620. arXiv:math/0105033. doi:10.4007/annals.2003.157.575. S2CID 6992408.
  2. Hsian-Hua Tseng; Chenchang Zhu (2006). "Integrating Lie algebroids via stacks". Compositio Mathematica. 142 (1): 251–270. arXiv:math/0405003. doi:10.1112/S0010437X05001752. S2CID 119572919.
  3. Chenchang Zhu (2006). "Lie II theorem for Lie algebroids via stacky Lie groupoids". arXiv:math/0701024.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.