List of Solar System objects by greatest aphelion

This is a list of Solar System objects by greatest aphelion or the greatest distance from the Sun that the orbit takes it. For the purposes of this list, it is implied that the object is orbiting the Sun in a two-body solution without the influence of the planets or passing stars. The aphelion can change significantly due to the gravitational influence of planets and other stars. Most of these objects are comets on a calculated path and may not be directly observable.[1] For instance, comet Hale-Bopp was last seen in 2013 at magnitude 24[2] and continues to fade, making it invisible to all but the most powerful telescopes.

The orbit of Sedna (red) set against the orbits of outer Solar System objects (Pluto's orbit is purple).

The maximum extent of the region in which the Sun's gravitational field is dominant, the Hill sphere, may extend to 230,000 astronomical units (3.6 light-years) as calculated in the 1960s.[3] But any comet currently more than about 150,000 AU (2 ly) from the Sun can be considered lost to the interstellar medium. The nearest known star is Proxima Centauri at 271,000 AU which is 4.22 light years,[4] followed by Alpha Centauri at about 4.35 light years away according to NASA.[4]

Comets are thought to orbit the Sun at great distances, but then be perturbed by passing stars and the galactic tides.[5] As they come into or leave the inner Solar System they may have their orbit changed by the planets, or alternatively be ejected from the Solar System.[5] It is also possible they may collide with the Sun or a planet.[5]

Explanation

Barycentric vs heliocentric orbits

Motion of the Solar System's barycenter relative to the Sun

As many of the objects listed below have some of the most extreme orbits of any objects in the Solar System, describing their orbit precisely can be particularly difficult. For most objects in the Solar System, a heliocentric reference frame (relative to the gravitational center of the Sun) is sufficient to explain their orbits. However, as the orbits of objects become closer to the Solar System's escape velocity, with long orbital periods on the order of hundreds or thousands of years, a different reference frame is required to describe their orbit: a barycentric reference frame. A barycentric reference frame measures the asteroid's orbit relative to the gravitational center of the entire Solar System, rather than just the Sun. Mostly due to the influence of the outer gas giants, the Solar System barycenter varies by up to twice the radius of the Sun.

This difference in position can lead to significant changes in the orbits of long-period comets and distant asteroids. Many comets have hyperbolic (unbound) orbits in a heliocentric reference frame, but in a barycentric reference frame have much more firmly bound orbits, with only a small handful remaining truly hyperbolic.

Eccentricity and Vinf

The orbital parameter used to describe how non-circular an object's orbit is, is eccentricity (e). An object with an e of 0 has a perfectly circular orbit, with its perihelion distance being just as close to the Sun as its aphelion distance. An object with an e of between 0 and 1 will have an elliptical orbit, with, for instance, an object with an e of 0.5 having a perihelion twice as close to the Sun as its aphelion. As an object's e approaches 1, its orbit will be more and more elongated before, and at e=1, the object's orbit will be parabolic and unbound to the Solar System (i.e. not returning for another orbit). An e greater than 1 will be hyperbolic and still be unbound to the Solar System.

Although it describes how "unbound" an object's orbit is, eccentricity does not necessarily reflect how high an incoming velocity said object had before entering the Solar System (a parameter known as Vinfinity, or Vinf). An object would need a much lower velocity to be unbound from the Solar System if it didn't have an especially nearby perihelion, but an object with a perihelion inside the orbit of Mercury would need a much higher excess velocity to escape the Solar System. A clear example of this is the eccentricities of the two known Interstellar objects as of October 2019, 1I/'Oumuamua. and 2I/Borisov. 'Oumuamua had an incoming Vinf of 26.5 kilometres per second (59,000 mph), but due to its low perihelion distance of only 0.255 au, it had an eccentricity of 1.200. However, Borisov's Vinf was only slightly higher, at 32.3 km/s (72,000 mph), but due to its higher perihelion distance of ~2.003 au, its eccentricity was a comparably higher 3.340. In practice, no object originating from the Solar System should have an incoming heliocentric eccentricity much higher than 1, and should rarely have an incoming barycentric eccentricity of above 1, as that would imply that the object had originated from an indefinitely far distance from the Sun.

Orbital epochs

Due to having the most eccentric orbits of any Solar System body, a comet's orbit typically intersects one or more of the planets in the Solar System. As a result, the orbit of a comet is frequently perturbed significantly, even over the course of a single pass through the inner Solar System. Due to the changing orbit, it's necessary to provide a calculation of the orbit of the comet (or similarly orbiting body) both before and after entering the inner Solar System. A standard epoch of 1600 is given for the incoming orbits, and 2400 for outgoing orbits. For example, Comet ISON was ~312 au from the Sun in 1600, and its remnants will be ~431 au from the Sun in 2400, both well outside of any significant gravitational influence from the planets.

Comets with greatest aphelion (2 body heliocentric)

C/1910 A1 during its 1910 close approach
Proxima Centauri is 271,000 AU or 4.25 light years away
Object Heliocentric[1]
Aphelion (Q)
(Sun)
Perihelion epoch
Barycentric
Aphelion (AD)
(Sun+Jupiter)
epoch 2200
Barycentric
Aphelion
epoch 1800
C/2012 S4 (PANSTARRS)504,443 AU (8.0 ly)5700 AU8500 AU
C/2012 CH17 (MOSS)279,825 AU (4.4 ly)7283 AU26000 AU
C/2008 C1 (Chen-Gao)203,253 AU (3.2 ly)3822 AU520 AU
C/1992 J1 (Spacewatch)154,202 AU (2.4 ly)3651 AU72000 AU
C/2007 N3 (Lulin)144,828 AU (2.3 ly)2419 AU64000 AU
C/2017 T2 (PANSTARRS)117,212 AU (1.9 ly)2975 AU84000 AU
C/1937 N1 (Finsler)115,031 AU (1.8 ly)7121 AU16000 AU
C/1972 X1 (Araya)108,011 AU (1.7 ly)5630 AU4200 AU
C/2014 R3 (PANSTARRS)80,260 AU (1.3 ly)12841 AU19000 AU
C/2015 O1 (PANSTARRS)77,092 AU (1.2 ly)21753 AU52000 AU
C/2001 C1 (LINEAR)76,230 AU (1.2 ly)ejection98000 AU
C/2002 J4 (NEAT)57,793 AU (0.91 ly)ejection59000 AU
C/1910 A1 (Great January comet)51,589 AU (0.82 ly)2974 AU15000 AU
C/1958 D1 (Burnham)46,408 AU (0.73 ly)1110 AU7800 AU
C/1986 V1 (Sorrells)37,825 AU (0.60 ly)8946 AU5400 AU
C/2005 G1 (LINEAR)37,498 AU (0.59 ly)40572 AU110000 AU
C/2006 W3 (Christensen)35,975 AU (0.57 ly)8212 AU5300 AU
C/2009 W2 (Boattini)31,059 AU (0.49 ly)3847 AU4200 AU
C/2005 L3 (McNaught)26,779 AU (0.42 ly)6851 AU33000 AU
C/2004 YJ35 (LINEAR)26,433 AU (0.42 ly)2480 AU75000 AU
C/2003 H3 (NEAT)26,340 AU (0.42 ly)ejection4900 AU
C/2010 L3 (Catalina)25,609 AU (0.40 ly)21094 AU12000 AU
C/1902 R1 (Perrine)25,066 AU (0.40 ly)2306 AU74000 AU
C/1889 G1 (Barnard)24,784 AU (0.39 ly)1575 AU2100 AU
C/2007 VO53 (Spacewatch)24,383 AU (0.39 ly)16835 AU22000 AU
C/2012 U1 (PANSTARRS) 24,373 AU
C/1958 R1 (Burnham-Slaughter) 24,299 AU
C/2010 D3 (WISE) 23,255 AU
C/2001 K5 (LINEAR) 22,810 AU
AU
AU
AU
  • C/1991 R1 (McNaught-Russell) 22313
  • C/2009 U5 (Grauer) 21191
  • C/2014 OE4 (PANSTARRS) 21176
  • C/1977 V1 (Tsuchinshan) 19631
  • C/1888 P1 (Brooks) 19612
  • C/2011 N2 (McNaught) 19536
  • C/1910 P1 (Metcalf) 19190
  • C/1882 F1 (Wells) 19135
  • C/1984 W2 (Hartley) 19000
  • C/2002 K1 (NEAT) 18858
  • C/2002 C2 (LINEAR) 18034
  • C/2008 Q3 (Garradd) 17850
  • C/2013 F2 (Catalina) 16812
  • C/2010 H1 (Garradd) 16721
  • C/1999 T1 (McNaught-Hartley) 16693
  • C/2004 P1 (NEAT) 16107
  • C/1974 F1 (Lovas) 15129
  • C/2013 J5 (Boattini) 14297
  • C/2006 Q1 (McNaught) 13768
  • C/2014 Q6 (PANSTARRS) 13761
  • C/1975 V1-A (West) 13560
  • C/1999 F1 (Catalina) 13390

Distant periodic comets with well-known aphelion

The orbital paths of Halley, outlined in blue, against the orbits of Jupiter, Saturn, Uranus and Neptune, outlined in red.

These can also change significantly such as if perturbed by Jupiter

The orbits of three periodic comets, Halley, Borrelly and Ikeya–Zhang, set against the orbits of the outer planets. Ikeya–Zhang is to the right.

Distant comets with long observation arcs and/or barycentric

Comet West in 1976

Examples of comets with a more well-determined orbit. Comets are extremely small relative to other bodies and hard to observe once they stop outgassing (see Coma (cometary)). Because they are typically discovered close to the Sun, it will take some time even thousands of years for them to actually travel out to great distances. The Whipple proposal might be able to detect Oort cloud objects at great distances, but probably not a particular object.

Minor planets

A large number of trans-Neptunian objects (TNOs) – minor planets orbiting beyond the orbit of Neptune – have been discovered in recent years. Many TNOs have orbits with an aphelion (farthest distance to the Sun) far beyond Neptune's orbit at 30.1 AU. Some of these TNOs with an extreme aphelion are detached objects such as 2010 GB174, which always reside in the outermost region of the Solar System, while for other TNOs, the extreme aphelion is due to an exceptionally high eccentricity such as for 2005 VX3, which orbits the Sun at a distance between 4.1 (closer than Jupiter) and 2200 AU (70 times farther from the Sun than Neptune). The following is a list of TNOs with the largest aphelion in descending order.[14][15]

Approximate number of minor planets
Aphelion
in AU
Number of minor planets
200–300
29
300–400
14
400–500
7
500–600
8
600–700
3
700–800
4
800–900
3
900–1000
2
1000–1500
4
Beyond 1500
9

TNOs with an aphelion larger than 200 AU

Orbits of three known sednoids: Sedna, 2012 VP113, and Leleākūhonua

The following group of bodies have orbits with an aphelion above 200 AU,[14] with 1-sigma uncertainties given to two significant digits.

TNOs with an aphelion between 100 and 200 AU

65489 Ceto (2003 FX128)
225088 Gonggong (2007 OR10)

The following group of bodies have orbits with an aphelion between 100 and 200 AU.[20]

  • 2018 DF4 198.71 ±0.11
  • 2004 NN8 192.58 ±0.13
  • (65489) Ceto 186.92 ±0.02
  • (303775) 2005 QU182 186.33 ±0.03
  • 2018 KH3 185.68 ±0.51
  • 2015 DW224 185.08 ±0.05
  • (437360) 2013 TV158 182.86 ±0.02
  • (523771) 2014 XP40 182.01 ±0.02
  • 2014 KA102 179.21 ±0.09
  • 2014 UZ224 179 ±16
  • (184212) 2004 PB112 177.93 ±0.19
  • (29981) 1999 TD10 177.69 ±0.04
  • 2000 KP65 177.2 ±3.5
  • 2012 FL84 173.89 ±0.07
  • 2014 DT143 173.56 ±0.07
  • 2015 KR174 173.11 ±0.12
  • 2014 WY508 172.85 ±0.03
  • (91554) 1999 RZ215 172.23 ±0.12
  • 2015 RC279 171.96 ±0.23
  • 2015 GY55 169.90 ±0.09
  • 2014 FL72 169.7 ±5.3
  • 2014 JE80 168.75 ±0.07
  • 2014 SR350 166 ±23
  • 2011 OB60 164.26 ±0.09
  • 2015 RK245 161.22 ±0.03
  • 2014 YD50 160.36 ±0.03
  • 2011 WJ157 159.95 ±0.03
  • 2015 VB168 159.57 ±0.89
  • 2010 ER65 159.38 ±0.01
  • 2015 GU55 157.73 ±0.10
  • 2013 LD16 157.43 ±0.09
  • 2011 BR163 157.12 ±0.04
  • (118702) 2000 OM67 157.08 ±0.20
  • 2014 SU349 160 ±310
  • 2008 ST291 156.40 ±0.34
  • 2014 SW349 156 ±20
  • 2011 HO60 155.71 ±0.03
  • 2003 QM112 155 ±12
  • (470593) 2008 LP17 153.25 ±0.02
  • (26181) 1996 GQ21 151.76 ±0.02
  • 2014 FJ72 151.0 ±7.5
  • (145474) 2005 SA278 149.18 ±0.02
  • 1999 CY118 149.16 ±0.16
  • 2005 RP43 148.63 ±0.02
  • 2006 HQ122 148.05 ±0.03
  • 2015 PK312 148 ±52
  • 2010 JJ124 147.62 ±0.18
  • 2017 RG16 147.45 ±0.03
  • 2012 UK177 147.25 ±0.43
  • 2014 XS3 146.89 ±0.03
  • (523698) 2014 GD54 146.82 ±0.02
  • (307982) 2004 PG115 144.93 ±0.01
  • (145451) 2005 RM43 144.05 ±0.02
  • (500832) 2013 GZ136 143.43 ±0.06
  • 2015 GB56 143.16 ±0.10
  • 2007 FN51 142.78 ±0.10
  • 2014 OY393 142 ±20
  • (82155) 2001 FZ173 141.82 ±0.08
  • 2003 YQ179 140.17 ±0.06
  • 2002 PR170 140 ±35
  • 1999 CF119 140.02 ±0.12
  • 2007 LF38 138.90 ±0.09
  • 2015 GW55 137.6 ±1.6
  • 2008 JO41 137.60 ±0.05
  • 2005 EF304 137.55 ±0.10
  • (523798) 2017 CX33 137.10 ±0.02
  • 2015 PZ315 140 ±290
  • 2010 JH124 136.55 ±0.14
  • (523797) 2016 NM56 136.46 ±0.01
  • 2015 TH367 140 ±120
  • 2015 VL168 136.0 ±2.2
  • 2010 PU75 135.38 ±0.01
  • 2003 QY91 100 ±98000
  • (523755) 2014 WZ508 132.99 ±0.01
  • 2016 EJ203 132.23 ±0.02
  • 1999 RZ214 131.96 ±0.13
  • 2000 CP105 100 ±73000
  • 2015 VQ167 131.49 ±0.47
  • 1999 DG8 100 ±4000000
  • 2013 BN27 131 ±21
  • (15874) 1996 TL66 130.17 ±0.01
  • 2014 XX40 130.07 ±0.03
  • 2017 MZ4 129.23 ±0.02
  • (523794) 2015 RR245 128.62 ±0.03
  • 2015 TJ367 128 ±16
  • 2006 HV122 127.61 ±0.17
  • 2013 OR11 127.57 ±0.01
  • 2003 UA414 126.94 ±0.01
  • 2014 WM510 125.27 ±0.10
  • 2015 KU174 125.11 ±0.04
  • (523777) 2014 YF50 125.10 ±0.01
  • 2014 SY349 125 ±79
  • 2001 FK194 100 ±10000
  • (523733) 2014 PR70 124.06 ±0.01
  • 2014 SZ349 124 ±52
  • 2005 NU125 122.94 ±0.02
  • 2015 KZ173 122.87 ±0.09
  • 2014 DQ143 122.74 ±0.03
  • 2010 GW64 122.73 ±0.19
  • 2013 SE99 122.5 ±2.5
  • 2013 JR64 122.54 ±0.04
  • 2005 OE 122.41 ±0.10
  • 2012 HD2 122.21 ±0.02
  • (523767) 2014 WH510 121.42 ±0.01
  • 2015 RL278 120.94 ±0.06
  • 2004 TF282 120.43 ±0.02
  • 2015 VS167 120.42 ±0.04
  • 2001 KZ76 100 ±110000
  • 2000 SQ331 100 ±78000
  • 2010 JO179 119.04 ±0.03
  • 2014 XQ40 118.80 ±0.01
  • 2003 LA7 118.53 ±0.28
  • 2011 UW412 117.73 ±0.56
  • 2014 WN510 117.55 ±0.05
  • 2012 BZ154 117.37 ±0.07
  • 2014 OO394 117 ±70
  • 2017 OX68 116.29 ±0.01
  • 2013 QQ95 116.10 ±0.12
  • 2000 PF30 116.00 ±0.16
  • 2013 JV64 116.0 ±1.7
  • 2014 SO350 115.64 ±0.14
  • 2000 PH30 115.23 ±0.12
  • 2004 VM131 114.92 ±0.05
  • 2003 FH129 114.67 ±0.10
  • (451657) 2012 WD36 114.32 ±0.08
  • 2015 FQ345 114.06 ±0.04
  • 2005 PT21 114.04 ±0.80
  • 2015 VP166 114.02 ±0.13
  • (127546) 2002 XU93 113.59 ±0.04
  • 2015 VO166 112.82 ±0.62
  • 2015 TN178 111.64 ±0.01
  • 2011 UP411 111.63 ±0.05
  • 2015 DA225 111.05 ±0.47
  • 2009 KN30 110.82 ±0.06
  • 2015 RK258 111 ±14
  • 2015 RZ278 110.69 ±0.07
  • 2012 BX154 110.30 ±0.08
  • 2011 UJ413 110.16 ±0.03
  • 2015 RB278 109.35 ±0.28
  • 2016 SW50 109.30 ±0.61
  • 2015 BZ517 110 ±150
  • 2007 LJ38 108.70 ±0.06
  • 2012 UR177 108.68 ±0.06
  • 2015 VA168 108.67 ±0.06
  • 2015 KO174 108.61 ±0.03
  • 471143 Dziewanna 108.54 ±0.02
  • 229762 Gǃkúnǁʼhòmdímà 108.28 ±0.01
  • 2014 UV224 108.26 ±0.04
  • 2011 YN79 108.04 ±0.04
  • 2005 GX206 107.71 ±0.01
  • 2007 TA418 107.46 ±0.08
  • 2014 UV229 107.40 ±0.03
  • 2012 DY98 107.22 ±0.02
  • (160148) 2001 KV76 107.11 ±0.18
  • 2013 AR183 107.09 ±0.03
  • 2003 OS33 106 ±72
  • 2015 VR167 106.19 ±0.28
  • (65407) 2002 RP120 105.99 ±0.01
  • (126619) 2002 CX154 105.83 ±0.10
  • 2007 RM314 105.43 ±0.06
  • (145480) 2005 TB190 104.90 ±0.01
  • 2015 GC56 104.69 ±0.04
  • (523722) 2014 LV28 104.12 ±0.01
  • (523680) 2013 YJ151 103.84 ±0.01
  • 2014 FC69 104 ±16
  • (471272) 2011 FY9 103.64 ±0.02
  • (500876) 2013 JD64 103.63 ±0.04
  • 2006 HX122 104 ±8
  • 2000 AB229 103.47 ±0.42
  • 2015 RH279 103.30 ±0.16
  • 2001 OM109 103.17 ±0.27
  • 2014 WJ510 102.90 ±0.01
  • (523770) 2014 XO40 102.64 ±0.01
  • 2014 SD350 102 ±98
  • 2001 OT108 100 ±74000
  • 2015 KF172 101 ±12
  • 225088 Gonggong 101.17 ±0.01
  • 2015 VE168 101.13 ±0.05
  • 2014 FC72 101.00 ±0.01
  • 2015 DX224 100.86 ±0.03
  • 2012 EE18 100.82 ±0.04
  • 2007 TR436 100 ±6200
  • 2015 RA279 100.36 ±0.51
  • 2005 LC54 100.18 ±0.13

TNOs with an aphelion between 90 and 100 AU

Orbit comparison of Eris (blue)
  • 2014 QC442 99.9 ±1.9
  • 2016 PO66 100 ±2800
  • 2001 FN194 100 ±72000
  • 2011 UQ412 98.80 ±0.03
  • 2014 UA225 98.80 ±0.02
  • 2017 YG5 99 ±25
  • 2000 YY1 98 ±73
  • 2006 HO122 100 ±170
  • 2013 UE15 97.74 ±0.01
  • (523652) 2011 LZ28 97.57 ±0.01
  • (136199) Eris 97.47 ±0.01
  • 2003 QK91 96.98 ±0.06
  • 2004 VH131 96.96 ±0.08
  • 2000 SS331 100 ±53000
  • 2000 QK226 100 ±8800
  • 2014 OP394 96.52 ±0.02
  • 2014 FZ71 96.49 ±0.50
  • 2006 QH181 96.36 ±0.63
  • 2009 DJ143 96.22 ±0.02
  • 2004 VG131 95.53 ±0.11
  • 2015 VG168 95.49 ±0.19
  • (470599) 2008 OG19 95.39 ±0.01
  • (480017) 2014 QB442 95.32 ±0.01
  • (523800) 2017 KZ31 95.23 ±0.01
  • 2013 UR15 95.08 ±0.03
  • 2001 FJ194 100 ±5300
  • 2014 HC200 94.88 ±0.03
  • (523639) 2010 RE64 94.46 ±0.01
  • 2000 PS30 100 ±17000
  • 2006 QG181 93.79 ±0.08
  • 2016 CO264 93.77 ±0.00
  • 2009 DD47 94 ±18
  • (136120) 2003 LG7 93.56 ±0.11
  • (523753) 2014 WV508 93.33 ±0.01
  • 2014 ON394 93.01 ±0.04
  • 2014 QR441 92.98 ±0.30
  • 2015 GZ55 92.93 ±0.09
  • 2006 QJ181 92.83 ±0.01
  • 2015 GD56 92.66 ±0.11
  • 2011 US411 92.63 ±0.03
  • 2013 RO98 90 ±250
  • 2015 VN166 92.40 ±0.08
  • 2014 WL510 91.91 ±0.06
  • 2004 HQ79 91.89 ±0.04
  • 2015 KY173 91.82 ±0.14
  • 2014 FX71 91.60 ±0.54
  • (523787) 2015 DV224 91.38 ±0.01
  • 2015 BB519 91.27 ±0.05
  • 2001 KG77 90.97 ±0.13
  • 2010 XE91 90.94 ±0.02
  • 1998 XY95 90.91 ±0.01
  • 2009 KX36 90 ±190
  • 2015 RZ277 90.30 ±0.49
  • 2015 VM166 90.15 ±0.05
  • 2015 UH87 90 ±22

Greatest barycentric aphelion

The following asteroids have an incoming barycentric aphelion of at least 1000 AU.

name perihelion (AU) Heliocentric aphelion (AU) Barycentric aphelion (AU) (1800) Barycentric aphelion (AU) (2200) Change (%)
2014 FE7236.33297030713060-0.36
2002 RN1092.691109023201190-49
2005 VX34.106183021401700-17
541132 Leleākūhonua65.082120228022800
A/2019 C16.580217021801530-30
2017 MB74.456608020402840+28
2012 DR3014.57319020002050+2.4
2013 BL768.355192018501920+3.6
A/2019 K63.929253017601510-14
(308933) 2006 SQ37224.14178015401560+1.3
2013 SY9950.031330141014100
2015 KG16340.501630132013200
2013 AZ607.9279601260827-34
2007 DA612.6779701190852-28
2013 GW14123.52133011301120-0.9
(87269) 2000 OO6720.73104011201070-4.5

Comparison

The orbits of Sedna, 2012 VP113, Leleākūhonua, and other very distant objects along with the predicted orbit of Planet Nine. The three sednoids (pink) along with the red-colored extreme trans-Neptunian object (eTNO) orbits are suspected to be aligned with the hypothetical Planet Nine while the blue-colored eTNO orbits are anti-aligned. The highly elongated orbits colored brown include centaurs and damocloids with large aphelion distances over 200 AU.

See also

About comets
Objects of interest
Others

References

  1. JPL Small-Body Database Search Engine: Q > 20000 (au)
  2. "C/1995 O1 (Hale-Bopp)". Minor Planet Center. Retrieved 14 March 2018.
  3. Chebotarev, G.A. (1964), "Gravitational Spheres of the Major Planets, Moon and Sun", Soviet Astronomy, 7 (5): 618–622, Bibcode:1964SvA.....7..618C
  4. NASA – Imagine the Universe: The Nearest Star
  5. Frequently Asked Questions About General Astronomy
  6. Furthest SSB
  7. Horizons output. "Barycentric Osculating Orbital Elements for Comet C/1975 V1-A (West)". Retrieved 2011-02-01. (Solution using the Solar System Barycenter. Select Ephemeris Type:Elements and Center:@0)
  8. Horizons output. "Barycentric Osculating Orbital Elements for Comet C/1999 F1 (Catalina)". Retrieved 2011-03-07. (Solution using the Solar System Barycenter and barycentric coordinates. Select Ephemeris Type:Elements and Center:@0)
  9. Horizons output. "Barycentric Osculating Orbital Elements for Comet C/2012 S4 (PANSTARRS)". Retrieved 2015-09-26. (Solution using the Solar System Barycenter and barycentric coordinates. Select Ephemeris Type:Elements and Center:@0)
  10. Horizons output (2011-01-30). "Barycentric Osculating Orbital Elements for Comet Hyakutake (C/1996 B2)". Retrieved 2011-01-30. (Horizons)
  11. Horizons output. "Barycentric Osculating Orbital Elements for Comet C/1910 A1 (Great January comet)". Retrieved 2011-02-07. (Solution using the Solar System Barycenter and barycentric coordinates. Select Ephemeris Type:Elements and Center:@0)
  12. Horizons output. "Barycentric Osculating Orbital Elements for Comet C/1992 J1 (Spacewatch)". Retrieved 7 October 2012. (Solution using the Solar System Barycenter and barycentric coordinates. Select Ephemeris Type:Elements and Center:@0)
  13. Horizons output. "Barycentric Osculating Orbital Elements for Comet Lulin (C/2007 N3)". Retrieved 2011-01-30. (Solution using the Solar System Barycenter. Select Ephemeris Type:Elements and Center:@0)
  14. JPL asteroids greater than 200 AU aphelion (Q)
  15. JPL asteroids aphelion greater than 800 AU
  16. Marc W. Buie. "Orbit Fit and Astrometric record for 308933" (2010-09-17 using 64 of 65 observations over 5.01 years). SwRI (Space Science Department). Retrieved 2008-09-05.
  17. Becker, J. C; et al. (14 May 2018). "Discovery and Dynamical Analysis of an Extreme Trans-Neptunian Object with a High Orbital Inclination". The Astronomical Journal. 156 (2): 81. arXiv:1805.05355. doi:10.3847/1538-3881/aad042. S2CID 55163842.
  18. Marc W. Buie (2007-11-08). "Orbit Fit and Astrometric record for 04VN112". SwRI (Space Science Department). Archived from the original on 2010-08-18. Retrieved 2008-07-17.
  19. "JPL Small-Body Database Browser: (2004 VN112)". Retrieved 2011-05-20.
  20. JPL database down to 100 AU aphelion minor planets
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.