Nonrecursive filter
In mathematics, a nonrecursive filter only uses input values like x[n − 1], unlike recursive filter where it uses previous output values like y[n − 1].
In signal processing, non-recursive digital filters are often known as Finite Impulse Response (FIR) filters, as a non-recursive digital filter has a finite number of coefficients in the impulse response h[n].
Examples:
- Non-recursive filter: y[n] = 0.5x[n − 1] + 0.5x[n]
- Recursive filter: y[n] = 0.5y[n − 1] + 0.5x[n]
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.