Soboleva modified hyperbolic tangent

The Soboleva modified hyperbolic tangent, also known as (parametric) Soboleva modified hyperbolic tangent activation function ([P]SMHTAF),[nb 1] is a special S-shaped function based on the hyperbolic tangent, given by

This function was originally proposed as "modified hyperbolic tangent"[nb 1] by Elena V. Soboleva (Елена В. Соболева) as a utility function for multi-objective optimization and choice modelling in decision-making.[1][2][3] It has since been introduced into neural network theory and practice.[4]

The function was also used to approximate current-voltage characteristics of field-effect transistors and light-emitting diodes,[5] to design antenna feeders,[6] and analyze plasma temperatures and densities in the divertor region of fusion reactors.[7]

A family of recurrence-generated parametric Soboleva modified hyperbolic tangent activation functions (NPSMHTAF, FPSMHTAF) was studied with parameters a = c and b = d.

With parameters a = b = c = d = 1 the modified hyperbolic tangent function reduces to the conventional tanh(x) function, whereas for a = b = 1 and c = d = 0, the term becomes equal to sinh(x).

See also

Notes

  1. Soboleva proposed the name "modified hyperbolic tangent" (mtanh, mth), but since other authors used this name also for other functions, some authors have started to refer to this function as "Soboleva modified hyperbolic tangent".

References

  1. Soboleva, Elena Vitalievna; Beskorovainyi, Vladimir Valentinovich (2008). The utility function in problems of structural optimization of distributed objects Функция для оценки полезности альтернатив в задачах структурной оптимизации территориально распределенных объектов. Четверта наукова конференція Харківського університету Повітряних Сил імені Івана Кожедуба, 16–17 квітня 2008 (The fourth scientific ccnference of the Ivan Kozhedub Kharkiv University of Air Forces, 16–17 April 2008) (in Russian). Kharkiv, Ukraine: Kharkiv University of Air Force (HUPS/ХУПС). p. 121.
  2. Soboleva, Elena Vitalievna (2009). S-образная функция полезности част-ных критериев для многофакторной оценки проектных решений [The S-shaped utility function of individual criteria for multi-objective decision-making in design]. Материалы XIII Международного молодежного форума «Радиоэлектро-ника и молодежь в XXI веке» (Materials of the 13th international youth forum "Radioelectronics and youth in the 21st century") (in Russian). Kharkiv, Ukraine: Kharkiv National University of Radioelectronics (KNURE/ХНУРЕ). p. 247.
  3. Beskorovainyi, Vladimir Valentinovich; Soboleva, Elena Vitalievna (2010). ИДЕНТИФИКАЦИЯ ЧАСТНОй ПОлЕЗНОСТИ МНОГОФАКТОРНЫХ АлЬТЕРНАТИВ С ПОМОЩЬЮ S-ОБРАЗНЫХ ФУНКЦИй [Identification of utility functions in multi-objective choice modelling by using S-shaped functions] (PDF). Problemy Bioniki : Respublikanskij Mežvedomstvennyj Naučno-Techničeskij Sbornik БИОНИКА ИНТЕЛЛЕКТА [Bionics of Intelligence] (in Russian). Vol. 72 no. 1. Kharkiv National University of Radioelectronics (KNURE/ХНУРЕ). pp. 50–54. ISSN 0555-2656. UDK 519.688: 004.896. Retrieved 2020-06-19. (5 pages)
  4. Malinova, Anna; Golev, Angel; Iliev, Anton; Kyurkchiev, Nikolay (August 2017). "A Famiy Of Recurrence Generating Activation Functions Based On Gudermann Function" (PDF). International Journal of Engineering Researches and Management Studies. Faculty of Mathematics and Informatics, University of Plovdiv "Paisii Hilendarski", Plovdiv, Bulgaria. 4 (8): 38–48. ISSN 2394-7659. Retrieved 2020-06-19. (11 pages)
  5. Tuev, Vasily I.; Uzhanin, Maxim V. (2009). ПРИМЕНЕНИЕ МОДИФИЦИРОВАННОЙ ФУНКЦИИ ГИПЕРБОЛИЧЕСКОГО ТАНГЕНСА ДЛЯ АППРОКСИМАЦИИ ВОЛЬТАМПЕРНЫХ ХАРАКТЕРИСТИК ПОЛЕВЫХ ТРАНЗИСТОРОВ [Using modified hyperbolic tangent function to approximate the current-voltage characteristics of field-effect transistors] (in Russian). Tomsk, Russia: Tomsk Politehnic University (TPU/ТПУ). pp. 135–138. No. 4/314. Archived from the original on 2017-08-15. Retrieved 2015-11-05. (4 pages)
  6. Golev, Angel; Djamiykov, Todor; Kyurkchiev, Nikolay (2017-11-23) [2017-10-09, 2017-08-19]. "Sigmoidal Functions In Antenna-Feeder Technique" (PDF). International Journal of Pure and Applied Mathematics. Faculty of Mathematics and Informatics, University of Plovdiv "Paisii Hilendarski", Plovdiv, Bulgaria / Technical University of Sofia, Sofia, Bulgaria: Academic Publications, Ltd. 116 (4): 1081–1092. doi:10.12732/ijpam.v116i4.23PAijpam.eu (inactive 2021-01-20). ISSN 1311-8080. Archived (PDF) from the original on 2020-06-19. Retrieved 2020-06-19.CS1 maint: DOI inactive as of January 2021 (link) (12 pages)
  7. Rubino, Giulio (2018-01-15) [2018-01-14]. Power Exhaust Data Analysis and Modeling Of Advanced Divertor Configuration (PDF) (Thesis). Joint Research Doctorate In Fusion Science And Engineering Cycle XXX (in English, Italian, and Portuguese). Padova, Italy: Centro Ricerche Fusione (CRF), Università degli Studi di Padova / Università degli Studi di Napoli Federico II / Instituto Superior Técnico (IST), Universidade de Lisboa. p. 84. ID 10811. Archived (PDF) from the original on 2020-06-19. Retrieved 2020-06-19. (2+viii+3*iii+102 pages)

Further reading

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.