Sphere packing in a sphere
Sphere packing in a sphere is a three-dimensional packing problem with the objective of packing a given number of equal spheres inside a unit sphere. It is the three-dimensional equivalent of the circle packing in a circle problem in two dimensions.
Number of inner spheres |
Maximum radius of inner spheres[1] | Packing density |
Optimality | Diagram | |
---|---|---|---|---|---|
Exact form | Approximate | ||||
1 | 1.0000 | 1 | Trivially optimal. | ||
2 | 0.5000 | 0.25 | Trivially optimal. | ||
3 | 0.4641... | 0.29988... | Trivially optimal. | ||
4 | 0.4494... | 0.36326... | Proven optimal. | ||
5 | 0.4142... | 0.35533... | Proven optimal. | ||
6 | 0.4142... | 0.42640... | Proven optimal. | ||
7 | 0.3859... | 0.40231... | Proven optimal. | ||
8 | 0.3780... | 0.43217... | Proven optimal. | ||
9 | 0.3660... | 0.44134... | Proven optimal. | ||
10 | 0.3530... | 0.44005... | Proven optimal. | ||
11 | 0.3445... | 0.45003... | Proven optimal. | ||
12 | 0.3445... | 0.49095... | Proven optimal. |
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.