Sudan function

In the theory of computation, the Sudan function is an example of a function that is recursive, but not primitive recursive. This is also true of the better-known Ackermann function. The Sudan function was the first function having this property to be published.

It was discovered (and published[1]) in 1927 by Gabriel Sudan, a Romanian mathematician who was a student of David Hilbert.

Definition

Value tables

Values of F0(x, y)
y\x 0 1 2 3 4 5
0 012345
1 123456
2 234567
3 345678
4 456789
5 5678910
6 67891011


Values of F1(x, y)
y\x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0 01234567891011121314
1 1357911131517192123252729
2 4812162024283236404448525660
3 111927354351596775839199107115123
4 2642587490106122138154170186202218234250
5 5789121153185217249281313345377409441473505
6 1201842483123764405045686326967608248889521016
7 247375503631759887101511431271139915271655178319112039
8 5027581014127015261782203822942550280630623318357438304086
9 101315252037254930613573408545975109562161336645715776698181
10 2036306040845108613271568180920410228112521227613300143241534816372
11 408361318179102271227514323163711841920467225152456326611286593070732755
12 81781227416370204662456228658327543685040946450424913853234573306142665522
13 1636924561327534094549137573296552173713819059009798289106481114673122865131057
14 3275249136655208190498288114672131056147440163824180208196592212976229360245744262128

In general, F1(x, y) is equal to F1(0, y) + 2y x.

Values of F2(x, y)
y\x 0 1 2 3 4 5
0 012345
1 182774185440
2 19F1(8, 10) = 10228F1(27, 29) ≈ 1.55 ×1010 F1(74, 76) ≈ 5.74 ×1024 F1(185, 187) ≈ 3.67 ×1058 F1(440, 442) ≈ 5.02 ×10135

References

  1. Bull. Math. Soc. Roumaine Sci. 30 (1927), 11 - 30; Jbuch 53, 171


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.