Tensor product of quadratic forms
In mathematics, the tensor product of quadratic forms is most easily understood when one views the quadratic forms as quadratic spaces. If R is a commutative ring where 2 is invertible, and if and are two quadratic spaces over R, then their tensor product is the quadratic space whose underlying R-module is the tensor product of R-modules and whose quadratic form is the quadratic form associated to the tensor product of the bilinear forms associated to and .
In particular, the form satisfies
(which does uniquely characterize it however). It follows from this that if the quadratic forms are diagonalizable (which is always possible if 2 is invertible in R), i.e.,
then the tensor product has diagonalization
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.