Energy density Extended Reference Table

This is extended version of energy density table from the main page energy density:

Energy densities table
Storage type Specific energy (MJ/kg) Energy density (MJ/L) Peak recovery efficiency % Practical recovery efficiency %
Arbitrary Antimatter89,875,517,874depends on density
Deuterium-tritium fusion338,000,000
Uranium-235 fissile isotope144,000,0001,500,000,000
Natural uranium (99.3% U-238, 0.7% U-235) in fast breeder reactor86,000,000
Reactor-grade uranium (3.5% U-235) in light water reactor3,456,00030%
Pu-238 α-decay2,200,000
Hf-178m2 isomer1,326,00017,649,060
Natural uranium (0.7% U235) in light water reactor443,00030%
Ta-180m isomer41,340689,964
Metallic hydrogen (recombination energy)216[1]
battery, Lithium-air6.12
Specific orbital energy of Low Earth orbit (approximate)33.0
Beryllium + Oxygen23.9[2]
Lithium + Fluorine23.75
Octaazacubane potential explosive22.9[3]
Ammonia (NH3)16.911.5[4]
Hydrogen + Oxygen15.8
Gasoline + Oxygen –> Derived from Gasoline13.3
Dinitroacetylene explosive - computed9.8
Octanitrocubane explosive8.5[5]16.9[6]
Tetranitrotetrahedrane explosive - computed8.3
Heptanitrocubane explosive - computed8.2
Sodium (reacted with chlorine)7.0349
Hexanitrobenzene explosive7[7]
Tetranitrocubane explosive - computed6.95
Ammonal (Al+NH4NO3 oxidizer)6.912.7
Tetranitromethane + hydrazine bipropellant - computed6.6
Nitroglycerin6.38[8]10.2[9]
ANFO-ANNM6.26
Octogen (HMX)5.7[8]10.8[10]
TNT [Kinney, G.F.; K.J. Graham (1985). Explosive shocks in air. Springer-Verlag. ISBN 978-3-540-15147-0.]4.6106.92
Copper Thermite (Al + CuO as oxidizer)4.1320.9
Thermite (powder Al + Fe2O3 as oxidizer)4.0018.4
Hydrogen peroxide decomposition (as monopropellant)2.73.8
battery, Lithium ion nanowire2.542995%[11]
battery, Lithium Thionyl Chloride (LiSOCl2)[12]2.5
Water 220.64 bar, 373.8°C1.9680.708
Kinetic energy penetrator 1.930
battery, Fluoride ion 1.72.8
battery, Hydrogen closed cycle H fuel cell[13]1.62
Hydrazine decomposition (as monopropellant)1.61.6
Ammonium nitrate decomposition (as monopropellant)1.42.5
Thermal Energy Capacity of Molten Salt198%[14]
Molecular spring approximate1
battery, Sodium Sulfur0.72[15]1.2385%[16]
battery, Lithium-manganese[17][18]0.83-1.011.98-2.09
battery, Lithium ion[19][20]0.46-0.720.83-3.6[21]95%[22]
battery, Lithium Sulfur[23]1.80[24]1.26
battery (Sodium Nickel Chloride), High Temperature0.56
battery, Silver-oxide[17]0.471.8
Flywheel0.36-0.5[25][26]
5.56 × 45 mm NATO bullet0.43.2
battery, Nickel metal hydride (NiMH), low power design as used in consumer batteries[27]0.41.55
battery, Zinc-manganese (alkaline), long life design[17][19]0.4-0.591.15-1.43
Liquid Nitrogen0.349
Water - Enthalpy of Fusion0.3340.334
battery, Zinc Bromine flow (ZnBr)[28]0.27
battery, Nickel metal hydride (NiMH), High Power design as used in cars[29]0.2500.493
battery, Nickel cadmium (NiCd)[19]0.141.0880%[22]
battery, Zinc-Carbon[19]0.130.331
battery, Lead acid[19]0.140.36
battery, Vanadium redox0.090.11887070-75%
battery, Vanadium Bromide redox0.180.25280%–90%[30]
Capacitor Ultracapacitor0.0199[31]0.050
Capacitor Supercapacitor0.0180%–98.5%[32]39%–70%[32]
Superconducting magnetic energy storage00.008[33]>95%
Capacitor0.002[34]
Neodymium magnet0.003[35]
Ferrite magnet0.0003[35]
Spring power (clock spring), torsion spring0.0003[36]0.0006
Storage type Energy density by mass (MJ/kg) Energy density by volume (MJ/L) Peak recovery efficiency % Practical recovery efficiency %

Notes

  1. http://iopscience.iop.org/1742-6596/215/1/012194/pdf/1742-6596_215_1_012194.pdf
  2. Cosgrove, Lee A.; Snyder, Paul E. (2002-05-01). "The Heat of Formation of Beryllium Oxide1". Journal of the American Chemical Society. 75 (13): 3102–3103. doi:10.1021/ja01109a018.
  3. Glukhovtsev, Mikhail N.; Jiao, Haijun; Schleyer, Paul von Ragué (1996-05-28). "Besides N2, What Is the Most Stable Molecule Composed Only of Nitrogen Atoms?†". Inorganic Chemistry. 35 (24): 7124–7133. doi:10.1021/ic9606237. PMID 11666896.
  4. Ammonia#Combustion
  5. Wiley Interscience
  6. Octanitrocubane
  7. Wiley Interscience
  8. "Chemical Explosives". Fas.org. 2008-05-30. Retrieved 2010-05-07.
  9. Nitroglycerin
  10. HMX
  11. "Nanowire battery can hold 10 times the charge of existing lithium-ion battery". News-service.stanford.edu. 2007-12-18. Retrieved 2010-05-07.
  12. "Lithium Thionyl Chloride Batteries". Nexergy. Archived from the original on 2009-02-04. Retrieved 2010-05-07.
  13. "The Unitized Regenerative Fuel Cell". Llnl.gov. 1994-12-01. Archived from the original on 2008-09-20. Retrieved 2010-05-07.
  14. "Technology". SolarReserve. Archived from the original on 2008-01-19. Retrieved 2010-05-07.
  15. "New battery could change world, one house at a time". Heraldextra.com. 2009-04-04. Retrieved 2010-05-07.
  16. Kita, A.; Misaki, H.; Nomura, E.; Okada, K. (August 1984). "Energy Citations Database (ECD) - - Document #5960185". Proc., Intersoc. Energy Convers. Eng. Conf.; (United States). Osti.gov. 2. OSTI 5960185.
  17. "ProCell Lithium battery chemistry". Duracell. Archived from the original on 2011-07-10. Retrieved 2009-04-21.
  18. "Properties of non-rechargeable lithium batteries". corrosion-doctors.org. Retrieved 2009-04-21.
  19. "Battery energy storage in various battery types". AllAboutBatteries.com. Archived from the original on 2009-04-28. Retrieved 2009-04-21.
  20. A typically available lithium ion cell with an Energy Density of 201 wh/kg "Archived copy". Archived from the original on 2008-12-01. Retrieved 2012-12-14.CS1 maint: archived copy as title (link)
  21. "Lithium Batteries". Retrieved 2010-07-02.
  22. Justin Lemire-Elmore (2004-04-13). "The Energy Cost of Electric and Human-Powered Bicycles" (PDF). p. 7. Retrieved 2009-02-26. Table 3: Input and Output Energy from Batteries
  23. "Lithium Sulfur Rechargeable Battery Data Sheet" (PDF). Sion Power, Inc. 2005-09-28. Archived from the original (PDF) on 2008-08-28.
  24. Kolosnitsyn, V.S.; E.V. Karaseva (2008). "Lithium-sulfur batteries: Problems and solutions". Russian Journal of Electrochemistry. 44 (5): 506–509. doi:10.1134/s1023193508050029.
  25. "Storage Technology Report, ST6 Flywheel" (PDF). Archived from the original (PDF) on 2013-01-14. Retrieved 2012-12-14.
  26. "Next-gen Of Flywheel Energy Storage". Product Design & Development. Archived from the original on 2010-07-10. Retrieved 2009-05-21.
  27. "Advanced Materials for Next Generation NiMH Batteries, Ovonic, 2008" (PDF). Archived from the original (PDF) on 2010-01-04. Retrieved 2012-12-14.
  28. "ZBB Energy Corp". Archived from the original on 2007-10-15. 75 to 85 watt-hours per kilogram
  29. High Energy Metal Hydride Battery Archived 2009-09-30 at the Wayback Machine
  30. "Microsoft Word - V-FUEL COMPANY AND TECHNOLOGY SHEET 2008.doc" (PDF). Archived from the original (PDF) on 2010-11-22. Retrieved 2010-05-07.
  31. "Maxwell Technologies: Ultracapacitors - BCAP3000". Maxwell.com. Retrieved 2010-05-07.
  32. "Archived copy" (PDF). Archived from the original (PDF) on 2012-07-22. Retrieved 2012-12-14.CS1 maint: archived copy as title (link)
  33. Archived February 16, 2010, at the Wayback Machine
  34. "Department of Computing". Archived from the original on 2006-10-06. Retrieved 2012-12-14.
  35. http://www.askmar.com/Magnets/Promising%20Magnet%20Applications.pdf
  36. "Garage Door Springs". Garagedoor.org. Retrieved 2010-05-07.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.