Frisch–Waugh–Lovell theorem
In econometrics, the Frisch–Waugh–Lovell (FWL) theorem is named after the econometricians Ragnar Frisch, Frederick V. Waugh, and Michael C. Lovell.[1][2][3]
The Frisch–Waugh–Lovell theorem states that if the regression we are concerned with is:
where and are and matrices respectively and where and are conformable, then the estimate of will be the same as the estimate of it from a modified regression of the form:
where projects onto the orthogonal complement of the image of the projection matrix . Equivalently, MX1 projects onto the orthogonal complement of the column space of X1. Specifically,
and this particular orthogonal projection matrix is known as the annihilator matrix.[4][5]
The vector is the vector of residuals from regression of on the columns of .
The theorem implies that the secondary regression used for obtaining is unnecessary: using projection matrices to make the explanatory variables orthogonal to each other will lead to the same results as running the regression with all non-orthogonal explanators included.
References
- Frisch, Ragnar; Waugh, Frederick V. (1933). "Partial Time Regressions as Compared with Individual Trends". Econometrica. 1 (4): 387–401. JSTOR 1907330.
- Lovell, M. (1963). "Seasonal Adjustment of Economic Time Series and Multiple Regression Analysis". Journal of the American Statistical Association. 58 (304): 993–1010. doi:10.1080/01621459.1963.10480682.
- Lovell, M. (2008). "A Simple Proof of the FWL Theorem". Journal of Economic Education. 39 (1): 88–91. doi:10.3200/JECE.39.1.88-91.
- Hayashi, Fumio (2000). Econometrics. Princeton: Princeton University Press. pp. 18–19. ISBN 0-691-01018-8.
- Davidson, James (2000). Econometric Theory. Malden: Blackwell. p. 7. ISBN 0-631-21584-0.
Further reading
- Davidson, Russell; MacKinnon, James G. (1993). Estimation and Inference in Econometrics. New York: Oxford University Press. pp. 19–24. ISBN 0-19-506011-3.
- Davidson, Russell; MacKinnon, James G. (2004). Econometric Theory and Methods. New York: Oxford University Press. pp. 62–75. ISBN 0-19-512372-7.
- Hastie, Trevor; Tibshirani, Robert; Friedman, Jerome (2017). "Multiple Regression from Simple Univariate Regression" (PDF). The Elements of Statistical Learning : Data Mining, Inference, and Prediction (2nd ed.). New York: Springer. pp. 52–55. ISBN 978-0-387-84857-0.
- Ruud, P. A. (2000). An Introduction to Classical Econometric Theory. New York: Oxford University Press. pp. 54–60. ISBN 0-19-511164-8.
- Stachurski, John (2016). A Primer in Econometric Theory. MIT Press. pp. 311–314.