Functional dependency

In relational database theory, a functional dependency is a constraint between two sets of attributes in a relation from a database. In other words, a functional dependency is a constraint between two keys. Given a relation R and sets of attributes , X is said to functionally determine Y (written XY) if and only if each X value in R is associated with precisely one Y value in R; R is then said to satisfy the functional dependency XY. Equivalently, the projection is a function, i.e. Y is a function of X.[1][2] In simple words, if the values for the X attributes are known (say they are x), then the values for the Y attributes corresponding to x can be determined by looking them up in any tuple of R containing x. Customarily X is called the determinant set and Y the dependent set. A functional dependency FD: XY is called trivial if Y is a subset of X.

In other words, a dependency FD: XY means that the values of Y are determined by the values of X. Two tuples sharing the same values of X will necessarily have the same values of Y.

The determination of functional dependencies is an important part of designing databases in the relational model, and in database normalization and denormalization. A simple application of functional dependencies is Heath's theorem; it says that a relation R over an attribute set U and satisfying a functional dependency XY can be safely split in two relations having the lossless-join decomposition property, namely into where Z = UXY are the rest of the attributes. (Unions of attribute sets are customarily denoted by mere juxtapositions in database theory.) An important notion in this context is a candidate key, defined as a minimal set of attributes that functionally determine all of the attributes in a relation. The functional dependencies, along with the attribute domains, are selected so as to generate constraints that would exclude as much data inappropriate to the user domain from the system as possible.

A notion of logical implication is defined for functional dependencies in the following way: a set of functional dependencies logically implies another set of dependencies , if any relation R satisfying all dependencies from also satisfies all dependencies from ; this is usually written . The notion of logical implication for functional dependencies admits a sound and complete finite axiomatization, known as Armstrong's axioms.

Examples

Cars

Suppose one is designing a system to track vehicles and the capacity of their engines. Each vehicle has a unique vehicle identification number (VIN). One would write VINEngineCapacity because it would be inappropriate for a vehicle's engine to have more than one capacity. (Assuming, in this case, that vehicles only have one engine.) On the other hand, EngineCapacityVIN is incorrect because there could be many vehicles with the same engine capacity.

This functional dependency may suggest that the attribute EngineCapacity be placed in a relation with candidate key VIN. However, that may not always be appropriate. For example, if that functional dependency occurs as a result of the transitive functional dependencies VIN → VehicleModel and VehicleModel → EngineCapacity then that would not result in a normalized relation.

Lectures

This example illustrates the concept of functional dependency. The situation modelled is that of college students visiting one or more lectures in each of which they are assigned a teaching assistant (TA). Let's further assume that every student is in some semester and is identified by a unique integer ID.

Student IDSemesterLectureTA
12346Numerical MethodsJohn
12214Numerical MethodsSmith
12346Visual ComputingBob
12012Numerical MethodsPeter
12012Physics IISimon

We notice that whenever two rows in this table feature the same StudentID, they also necessarily have the same Semester values. This basic fact can be expressed by a functional dependency:

  • StudentID → Semester.

Note that if a row was added where the student had a different value of semester that the functional dependency, FD, would no longer exist. This means that the FD is implied by the data as it is possible to have values that would invalidate the FD.

Other nontrivial functional dependencies can be identified, for example:

  • {StudentID, Lecture} → TA
  • {StudentID, Lecture} → {TA, Semester}

The latter expresses the fact that the set {StudentID, Lecture} is a superkey of the relation.

Employee department model

A classic example of functional dependency is the employee department model.

Employee IDEmployee nameDepartment IDDepartment name
0001John Doe1Human Resources
0002Jane Doe2Marketing
0003John Smith1Human Resources
0004Jane Goodall3Sales

This case represents an example where multiple functional dependencies are embedded in a single representation of data. Note that because an employee can only be a member of one department, the unique ID of that employee determines the department.

  • Employee ID → Employee Name
  • Employee ID → Department ID

In addition to this relationship, the table also has a functional dependency through a non-key attribute

  • Department ID → Department Name

This example demonstrates that even though there exists a FD Employee ID → Department ID - the employee ID would not be a logical key for determination of the department ID. The process of normalization of the data would recognize all FDs and allow the designer to construct tables and relationships that are more logical based on the data.

Properties and axiomatization of functional dependencies

Main article: Armstrong's axioms

Given that X, Y, and Z are sets of attributes in a relation R, one can derive several properties of functional dependencies. Among the most important are the following, usually called Armstrong's axioms:[3]

  • Reflexivity: If Y is a subset of X, then XY
  • Augmentation: If XY, then XZYZ
  • Transitivity: If XY and YZ, then XZ

"Reflexivity" can be weakened to just , i.e. it is an actual axiom, where the other two are proper inference rules, more precisely giving rise to the following rules of syntactic consequence:[4]



.

These three rules are a sound and complete axiomatization of functional dependencies. This axiomatization is sometimes described as finite because the number of inference rules is finite,[5] with the caveat that the axiom and rules of inference are all schemata, meaning that the X, Y and Z range over all ground terms (attribute sets).[4]

By applying augmentation and transitivity, one can derive two additional rules:

  • Pseudotransitivity: If XY and YWZ, then XWZ[3]
  • Composition: If XY and ZW, then XZYW[6]

One can also derive the union and decomposition rules from Armstrong's axioms:[3][7]

XY and XZ if and only if XYZ

Closure of functional dependency

The closure is essentially the full set of values that can be determined from a set of known values for a given relationship using its functional dependencies. One uses Armstrong's axioms to provide a proof - i.e. reflexivity, augmentation, transitivity.

Given and a set of FDs that holds in : The closure of in (denoted +) is the set of all FDs that are logically implied by .

Closure of a set of attributes

Closure of a set of attributes X with respect to is the set X+ of all attributes that are functionally determined by X using +.

Example

Imagine the following list of FDs. We are going to calculate a closure for A from this relationship.

1. AB
2. B → C
3. ABD

The closure would be as follows:

a) A → A (by Armstrong's reflexivity)
b) A → AB (by 1. and (a))
c) A → ABD (by (b), 3, and Armstrong's transitivity)
d) A → ABCD (by (c), and 2)

The closure is therefore A → ABCD. By calculating the closure of A, we have validated that A is also a good candidate key as its closure is every single data value in the relationship.

Covers and equivalence

Covers

Definition: covers if every FD in can be inferred from . covers if + +
Every set of functional dependencies has a canonical cover.

Equivalence of two sets of FDs

Two sets of FDs and over schema are equivalent, written , if + = +. If , then is a cover for and vice versa. In other words, equivalent sets of functional dependencies are called covers of each other.

Non-redundant covers

A set of FDs is nonredundant if there is no proper subset of with . If such an exists, is redundant. is a nonredundant cover for if is a cover for and is nonredundant.
An alternative characterization of nonredundancy is that is nonredundant if there is no FD XY in such that - {XY} XY. Call an FD XY in redundant in if - {XY} XY.

Applications to normalization

Heath's theorem

An important property (yielding an immediate application) of functional dependencies is that if R is a relation with columns named from some set of attributes U and R satisfies some functional dependency XY then where Z = UXY. Intuitively, if a functional dependency XY holds in R, then the relation can be safely split in two relations alongside the column X (which is a key for ) ensuring that when the two parts are joined back no data is lost, i.e. a functional dependency provides a simple way to construct a lossless join decomposition of R in two smaller relations. This fact is sometimes called Heaths theorem; it is one of the early results in database theory.[8]

Heath's theorem effectively says we can pull out the values of Y from the big relation R and store them into one, , which has no value repetitions in the row for X and is effectively a lookup table for Y keyed by X and consequently has only one place to update the Y corresponding to each X unlike the "big" relation R where there are potentially many copies of each X, each one with its copy of Y which need to be kept synchronized on updates. (This elimination of redundancy is an advantage in OLTP contexts, where many changes are expected, but not so much in OLAP contexts, which involve mostly queries.) Heath's decomposition leaves only X to act as a foreign key in the remainder of the big table .

Functional dependencies however should not be confused with inclusion dependencies, which are the formalism for foreign keys; even though they are used for normalization, functional dependencies express constraints over one relation (schema), whereas inclusion dependencies express constraints between relation schemas in a database schema. Furthermore, the two notions do not even intersect in the classification of dependencies: functional dependencies are equality-generating dependencies whereas inclusion dependencies are tuple-generating dependencies. Enforcing referential constraints after relation schema decomposition (normalization) requires a new formalism, i.e. inclusion dependencies. In the decomposition resulting from Heath's theorem, there is nothing preventing the insertion of tuples in having some value of X not found in .

Normal forms

Normal forms are database normalization levels which determine the "goodness" of a table. Generally, the third normal form is considered to be a "good" standard for a relational database.

Normalization aims to free the database from update, insertion and deletion anomalies. It also ensures that when a new value is introduced into the relation, it has minimal effect on the database, and thus minimal effect on the applications using the database.

Irreducible function depending set

A set S of functional dependencies is irreducible if the set has the following three properties:

  1. Each right set of a functional dependency of S contains only one attribute.
  2. Each left set of a functional dependency of S is irreducible. It means that reducing any one attribute from left set will change the content of S (S will lose some information).
  3. Reducing any functional dependency will change the content of S.

Sets of functional dependencies with these properties are also called canonical or minimal. Finding such a set S of functional dependencies which is equivalent to some input set S' provided as input is called finding a minimal cover of S': this problem can be solved in polynomial time.[9]

See also

References

  1. Terry Halpin (2008). Information Modeling and Relational Databases (2nd ed.). Morgan Kaufmann. p. 140. ISBN 978-0-12-373568-3.
  2. Chris Date (2012). Database Design and Relational Theory: Normal Forms and All That Jazz. O'Reilly Media, Inc. p. 21. ISBN 978-1-4493-2801-6.
  3. Abraham Silberschatz; Henry Korth; S. Sudarshan (2010). Database System Concepts (6th ed.). McGraw-Hill. p. 339. ISBN 978-0-07-352332-3.
  4. M. Y. Vardi. Fundamentals of dependency theory. In E. Borger, editor, Trends in Theoretical Computer Science, pages 171–224. Computer Science Press, Rockville, MD, 1987. ISBN 0881750840
  5. Abiteboul, Serge; Hull, Richard B.; Vianu, Victor (1995), Foundations of Databases, Addison-Wesley, pp. 164–168, ISBN 0-201-53771-0
  6. S. K. Singh (2009) [2006]. Database Systems: Concepts, Design & Applications. Pearson Education India. p. 323. ISBN 978-81-7758-567-4.
  7. Hector Garcia-Molina; Jeffrey D. Ullman; Jennifer Widom (2009). Database systems: the complete book (2nd ed.). Pearson Prentice Hall. p. 73. ISBN 978-0-13-187325-4. This is sometimes called the splitting/combining rule.
  8. Heath, I. J. (1971). "Unacceptable file operations in a relational data base". Proceedings of the 1971 ACM SIGFIDET (now SIGMOD) Workshop on Data Description, Access and Control - SIGFIDET '71. pp. 19–33. doi:10.1145/1734714.1734717. cited in:
  9. Meier, Daniel (1980). "Minimum covers in the relational database model". Journal of the ACM. doi:10.1145/322217.322223.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.