Glycoside hydrolase family 38

In molecular biology, glycoside hydrolase family 38 is a family of glycoside hydrolases.

Glycosyl hydrolases family 38 N-terminal domain
golgi alpha-mannosidase ii
Identifiers
SymbolGlyco_hydro_38
PfamPF01074
Pfam clanCL0158
InterProIPR000602
SCOP21o7d / SCOPe / SUPFAM
CAZyGH38
Membranome311
Alpha mannosidase, middle domain
golgi alpha-mannosidase ii
Identifiers
SymbolAlpha-mann_mid
PfamPF09261
InterProIPR015341
SCOP21o7d / SCOPe / SUPFAM
Glycosyl hydrolases family 38 C-terminal domain
golgi alpha-mannosidase ii
Identifiers
SymbolGlyco_hydro_38C
PfamPF07748
Pfam clanCL0103
InterProIPR011682
SCOP21o7d / SCOPe / SUPFAM
CAZyGH38

Glycoside hydrolases EC 3.2.1. are a widespread group of enzymes that hydrolyse the glycosidic bond between two or more carbohydrates, or between a carbohydrate and a non-carbohydrate moiety. A classification system for glycoside hydrolases, based on sequence similarity, has led to the definition of >100 different families.[1][2][3] This classification is available on the CAZy web site,[4][5] and also discussed at CAZypedia, an online encyclopedia of carbohydrate active enzymes.[6][7]

Glycoside hydrolase family 38 CAZY GH_38 comprises enzymes with only one known activity; alpha-mannosidase (EC 3.2.1.24) (EC 3.2.1.114).

Lysosomal alpha-mannosidase is necessary for the catabolism of N-linked carbohydrates released during glycoprotein turnover. The enzyme catalyzes the hydrolysis of terminal, non-reducing alpha-D-mannose residues in alpha-D-mannosides, and can cleave all known types of alpha-mannosidic linkages. Defects in the gene cause lysosomal alpha-mannosidosis (AM), a lysosomal storage disease characterised by the accumulation of unbranched oligo-saccharide chains.

A domain, which is found in the central region adopts a structure consisting of three alpha helices, in an immunoglobulin/albumin-binding domain-like fold. The domain is predominantly found in the enzyme alpha-mannosidase.[8]

References

  1. Henrissat B, Callebaut I, Fabrega S, Lehn P, Mornon JP, Davies G (July 1995). "Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases". Proceedings of the National Academy of Sciences of the United States of America. 92 (15): 7090–4. Bibcode:1995PNAS...92.7090H. doi:10.1073/pnas.92.15.7090. PMC 41477. PMID 7624375.
  2. Davies G, Henrissat B (September 1995). "Structures and mechanisms of glycosyl hydrolases". Structure. 3 (9): 853–9. doi:10.1016/S0969-2126(01)00220-9. PMID 8535779.
  3. Henrissat B, Bairoch A (June 1996). "Updating the sequence-based classification of glycosyl hydrolases". The Biochemical Journal. 316 (Pt 2): 695–6. doi:10.1042/bj3160695. PMC 1217404. PMID 8687420.
  4. "Home". CAZy.org. Retrieved 2018-03-06.
  5. Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B (January 2014). "The carbohydrate-active enzymes database (CAZy) in 2013". Nucleic Acids Research. 42 (Database issue): D490-5. doi:10.1093/nar/gkt1178. PMC 3965031. PMID 24270786.
  6. "Glycoside Hydrolase Family 38". CAZypedia.org. Retrieved 2018-03-06.
  7. CAZypedia Consortium (December 2018). "Ten years of CAZypedia: a living encyclopedia of carbohydrate-active enzymes" (PDF). Glycobiology. 28 (1): 3–8. doi:10.1093/glycob/cwx089. PMID 29040563.
  8. Heikinheimo P, Helland R, Leiros HK, Leiros I, Karlsen S, Evjen G, Ravelli R, Schoehn G, Ruigrok R, Tollersrud OK, McSweeney S, Hough E (March 2003). "The structure of bovine lysosomal alpha-mannosidase suggests a novel mechanism for low-pH activation". Journal of Molecular Biology. 327 (3): 631–44. doi:10.1016/S0022-2836(03)00172-4. PMID 12634058.
This article incorporates text from the public domain Pfam and InterPro: IPR000602
This article incorporates text from the public domain Pfam and InterPro: IPR011682
This article incorporates text from the public domain Pfam and InterPro: IPR015341
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.