IOE engine

The intake/inlet over exhaust, or "IOE" engine, known in the US as F-head, is a four-stroke internal combustion engine whose valvetrain comprises OHV inlet valves within the cylinder head and exhaust side-valves within the engine block.[1]

Yale IOE engine from 1911

IOE engines were widely used in early motorcycles, initially with the inlet valve being operated by engine suction instead of a cam-activated valvetrain. When the suction-operated inlet valves reached their limits as engine speeds increased, the manufacturers modified the designs by adding a mechanical valvetrain for the inlet valve. A few automobile manufacturers, including Willys, Rolls-Royce and Humber also made IOE engines for both cars and military vehicles. Rover manufactured inline four and six cylinder engines with a particularly efficient version of the IOE induction system.

A few designs with the reverse system, exhaust over inlet (EOI), have been manufactured, such as the Ford Quadricycle of 1896.

Description

In a F-head/IOE engine, the intake manifold and its valves are located in the cylinder head above the cylinders, and are operated by rocker arms which reverse the motion of the pushrods so that the intake valves open downward into the combustion chamber. The exhaust manifold and its valves are located beside or as part of the cylinders, in the block.[2] The exhaust valves are either roughly or exactly parallel with the pistons; their faces point upwards and they are not operated by separate pushrods, but by contact with a camshaft through the tappet or valve lifter and an integrated valve stem/pushrod. The valves were offset to one side, forming what seemed to be a pocket, leading to the term "pocket valve" being used for IOE engines.[3] An F-head engine combines features from both overhead-valve and flathead type engines, the inlet valve operating via pushrod and rocker arm and opening downward like an overhead valve engine, while the exhaust valve is offset from the cylinder and opens upward via an integrated pushrod/valve stem directly actuated by the camshaft, much like the valves in a flathead engine.

Origin

The earliest IOE layouts used atmospheric inlet valves which were held closed with a weak spring and were opened by the pressure differential created when the piston went down on the inlet stroke.[4] This worked well with low-speed early engines and had the benefit of being very simple and cheap, but the weak spring was unable to close the valve fast enough as engine speed increased. This required stronger springs, which in turn required direct mechanical action to open, as the atmospheric pressure of 15 PSI limits the total force available from creating a pressure differential, meaning that a 15 pounds (6.8 kg) spring is the strongest that can be used (for practical purposes, it would have to be lighter still). When the limits of this system were reached, the design was improved without substantial changes to the head casting by adding a mechanical system to open the inlet valves and stronger springs to close them.[5] In both cases, the exhaust valves were in the block and were opened by contact with a camshaft through a tappet or valve lifter and closed by springs.[4]

Advantages and disadvantages

The IOE design allows the use of larger valves than a sidevalve (or L-head) or overhead valve engine.[2] Its advantages over the sidevalve/flathead also include a compact combustion chamber, a well-located spark plug, and a cooling effect from the mixture swirl,[6] along with better intake mixture flow. Disadvantages include a combustion chamber of more complex shape than that of an overhead valve engine, which affects combustion rates and can create hot spots in the piston head, and inferior valve location, which hinders efficient scavenging. Due to the added complications of rocker arms and pushrods, it is also more complex and expensive to make than a sidevalve engine, as well as being physically larger due to the rocker arms being placed over the cylinder head, and it requires an inlet valve and ports in the cylinder head, while the cylinder of a sidevalve engine is simply a closed-end cylinder.

Rover IOE engines

Closeup of two cylinders in a 3-litre Rover IOE Engine. You can see the combustion chamber, angled piston top, and exhaust valve.

Rover used a more advanced form of IOE engine. It was designed by Jack Swaine in the mid-late 1940s and was in production from 1948 to the early 1990s.[7] Unlike the conventional F-head IOE, this had an efficient combustion chamber designed for good combustion, rather than simple manufacture.[8] The top surface of the block was machined at an angle, with the piston crowns angled in a "pitched roof" to match. At TDC, the piston almost touched the angled inlet valve and provided good 'squish' to the combustion chamber itself, offset to the side by half a cylinder diameter.[8] The resultant combustion chamber shape was a near-ideal hemisphere, although inverted and tilted from the usual "hemi-head" design.[8] The spark plug was centrally mounted and this,[6] together with the turbulence generated by the squish,[8] provided a short flame path.[6] The thinness of the gas layer between piston and inlet valve was so confined as to reduce the risk of detonation on poor fuel, one factor that kept it in service with Land Rover for so long. During the late 1940s and early 1950s when the only petrol available was low octane 'pool' petrol it also allowed Rover to run higher compression ratios than many competitors with the more usual side- or overhead valve designs.[7]

The unusual combustion chamber arrangement with its angled valves also led to an unusual valve train. The block-mounted camshaft operates small wedge shaped rockers, one for each valve. In early models the camshaft acts on a simple pad on the rocker, but for later models this pad was replaced by a roller follower. The exhaust rockers act directly on the valves, whilst the inlet rockers act on pushrods running up to a second set of longer flat rockers operating the inlet valves. The Rover engine, like many 1940s and earlier British designs, was a small bore, long stroke (undersquare) engine to keep the RAC tax horsepower rating as low as possible, thus keeping the road tax as low as possible. The IOE layout enabled Rover to use larger valves than would normally be possible in a small bore engine, allowing better breathing and better performance.[6]

The Rover IOE engine family encompassed straight-4 (1.6- and 2.0-litres) and straight-6 (2.1-, 2.2-, 2.3-, 2.4-, 2.6- and 3.0-litres) engines and powered much of the company's post-war range in the form of the P3, P4 and P5 models. Adapted versions of the 1.6 and 2.0 IOE engines were used in early version of the Land Rover as well. Power outputs ranged from 50bhp (Land Rover 1.6) to 134bhp (P5 3 litre MkII & III). The 2.6 6-cylinder IOE engine had a particularly long career. After being used in Rover P4 saloon cars it was added to long-wheelbase Land Rover models from 1963 in the 2A Forward Control models, then in 1967 in the bonneted 109",[9] and remained an optional fitment until 1980 when it was replaced by the Rover V8.

Similar Packard cylinder head

The shape of the combustion chamber as an "inverted hemi-head", along with the angled cylinder head joint and pitched-roof piston crowns, had earlier been used in the 1930 Van Ranst-designed Packard V12 engine, although in this case the valves were both in the block as side valves and the spark plug was poorly placed at the extremity of the combustion chamber.[10]

Other users

Motorcycles

The IOE valvetrain layout was used extensively in early American motorcycles, mainly based on a French design by De Dion-Bouton.[11] Harley-Davidson used IOE engines with atmospheric inlet valves until 1912,[12] and with mechanically driven inlet valves from 1911 to 1929.[13] Indian used IOE valvetrains on all of their four-cylinder bikes except those built in 1936 and 1937.[14][15] Other American motorcycle manufacturers that used IOE engines included Excelsior, Henderson, and Ace.[16]

Automobiles

Hudson used an IOE inline-four engine in its Essex line of cars from 1919 to 1923[17] and an IOE straight-six engine in its Hudson line of cars from 1927 to 1929.[18]

In Europe in the same period Humber Limited of Coventry, England produced a full range of cars using IOE engines, these were however phased out at the end of the 1920s in favour of models using cheaper L head engines shared with Hillman

Post WW2 Willys, and its successor Kaiser-Jeep, used variants of the Willys Hurricane engine from 1950 to 1971.[19]

Rolls-Royce used an IOE straight-six engine originally designed immediately prior to WW2 in their post-war Silver Wraith.[20][21] From this engine Rolls-Royce derived the B series engines for British Army combat vehicles which were produced in four, six and eight cylinder versions(the B40, B60 and B80) by Rolls-Royce (and in the case of the B40 used in the Austin Champ by Morris Motors)for military vehicles, fire appliances and even buses. A more advanced shorter stroke passenger car development the FB60 engine, a straight-six IOE engine displacing 3909cc and producing a claimed 175 , was used by BMC in the Vanden Plas Princess 4-litre R saloon car.[22] Over 6000 of these cars were made.

Exhaust over intake (EOI)

Some engines have been made with the reverse configuration, having the exhaust valve in the cylinder head and the intake valve in the block. The ABC Skootamota began production with an engine of this configuration,[23][24] but this was changed to an overhead valve engine before production ended.[23]

In 1936 and 1937, the Indian Four had the valve positions reversed, with the exhaust valve in the head and the inlet valve in the block. In theory, this would improve fuel vaporization, and the engine was actually more powerful. However, the new system made the cylinder head very hot. The exhaust valve linkage required frequent adjustment. The design was returned to the original IOE configuration in 1938.[14][15]

See also

References

  1. V.A.W Hillier: Fundamentals of Motor Vehicle Technology, 4th edition, Standly Thornes, Cheltenham 1991, ISBN 9780748705313, p. 39+40
  2. Nunney, M. J. (2007) [1988]. "1 The reciprocating piston petrol engine". Light and Heavy Vehicle Technology (Fourth ed.). Oxford, UK: Elsevier. p. 48. ISBN 978-0-7506-8037-0. Retrieved 2013-01-09. The main advantage of this type of layout was that larger inlet valves could be used, but being heavier they also placed limitations on maximum allowable engine speed.
  3. Girdler, Allan; Hussey, Ron (2003). "Chapter 1: 1909 Model 5 - The One That Worked". Harley-Davidson: The American Motorcycle. Motorbooks Classic. Photographs by Ron Hussey. MotorBooks International. pp. 13–16. ISBN 978-0-7603-1651-1. The exhaust valve was below the intake valve, so the design was called intake over exhaust, or IOE. The valves were off to one side of the cylinder bore, so the same design was called the pocket valve. In a poetic way, the valvetrain forms sort of an F shape, especially later with a pushrod and rocker arm, so the system has been known as the F head.
  4. Wilson, Hugo (1993). "Glossary". The Ultimate Motorcycle Book. Photography by Dave King. London: Dorling Kindersley. p. 188. ISBN 0-7513-0043-8. IOE Inlet over exhaust. Valve layout in which the inlet valve is placed directly over the (side) exhaust valve. Common on early engines, a development of atmospheric valve engines.
  5. Girdler, Allan; Hussey, Ron (2003). "Chapter 2: 1909 Model 5D - The First V-Twin". Harley-Davidson: The American Motorcycle. Motorbooks Classic. Photographs by Ron Hussey. MotorBooks International. p. 29. ISBN 978-0-7603-1651-1. In 1911 the V-twin went back into production, same general idea except that this time it came with a belt tensioner and with proper cam lobes and rockers and springs for the intake valves.
  6. Judge, Arthur W. (1983) [1972]. "Chapter II The Petrol Engine and its Components". Automobile Engines. Motor manuals. 1 (First Indian ed.). New Delhi, India: B. I. Publications. pp. 108–110. Retrieved 2013-01-09.
  7. Bobbit, Malcolm (2002-11-11) [1994]. Rover P4. Dorchester, UK: Veloce Publishing. pp. 23, 41–42. ISBN 978-1-903706-57-2. Retrieved 2013-01-02.
  8. Ricardo, Harry R., Sir (1953). The High-Speed Internal Combustion Engine (4th ed.). Glasgow: Blackie. pp. 91–92.
  9. Taylor, James (2010). Land Rover Series II and IIa Specification Guide. Ramsbury, Wiltshire: The Crowood Press. ISBN 978-1-84797-160-9.
  10. Ludvigsen, Karl (2005). The V12 Engine. Sparkford, Yeovil: Haynes Publishing. p. 114. ISBN 1-84425-004-0.
  11. Girdler, Allan (March 1996). Edwards, David (ed.). "The Miller Mystery". Cycle World. Hachette Filipacchi Magazines. 35 (3): 54 58. ISSN 0011-4286. This was the design DeDion used in France, which was imported to the US and adapted by Harley and Indian and countless others.
  12. Rafferty, Tod (2001). "Chapter One: The Beginning". Complete Harley Davidson: A Model-by-Model History of the American Motorcycle. MBI Publishing. p. 21. ISBN 0-7603-0326-6.
  13. Hatfield, Jerry (2004-10-23) [2002]. "The Flathead Era". In Darwin Holmstrom (ed.). The Harley-Davidson Century. St. Paul, MN USA: MotorBooks International. p. 56. ISBN 0-7603-2073-X. Retrieved 2013-01-02. For the 1930 season, Harley-Davidson replaced the last of the F-head engines with a 1,200-cc (74-cubic inches) flathead design.
  14. "1936 Indian "Upside-Down" Four". Motorcycle Hall of Fame Museum. American Motorcyclist Association. 2010. Archived from the original on 11 January 2011. Retrieved 13 January 2013. A dual-carb setup, offered in 1937, didn’t help, and by 1938, the “upside-down” Four was discontinued, replaced by a new “rightside-up” design.
  15. Greg, Harrison, ed. (August 1991). "Classics: 1937 Indian Model 437". American Motorcyclist. Westerville, Ohio, USA: American Motorcyclist Association. 45 (8): 71. ISSN 0277-9358.
  16. Wilson, Hugo (1995). "The A-Z of Motorcycles". The Encyclopedia of the Motorcycle. London: Dorling Kindersley. pp. 11, 58–59, 78. ISBN 0-7513-0206-6.
  17. Hyde, Charles K. (2009-11-15). "Five: The Founding of the Hudson Motor Car Company and the Roy D. Chapin Era, 1909—1936". Storied Independent Automakers: Nash, Hudson, and American Motors. Detroit, MI USA: Wayne State University Press. pp. 119–121. ISBN 978-0-8143-3446-1. Retrieved 2013-01-02. The engine was a four-cylinder F-head inline desigh, with overhead intake valves and exhaust valves in the engine block.
  18. Hyde, Charles K. (2009-11-15). "Five: The Founding of the Hudson Motor Car Company and the Roy D. Chapin Era, 1909—1936". Storied Independent Automakers: Nash, Hudson, and American Motors. Detroit, MI USA: Wayne State University Press. pp. 124–125. ISBN 978-0-8143-3446-1. Retrieved 2013-01-02. For 1927, Hudson replaced its L-head inline Six (289 CID and 76 brake horsepower) with a new F-head inline Six, also with 289 CID, but generating 92 brake horsepower.
  19. Allen, Jim (2007-10-15) [2007]. "Chapter 10 GO POWER Engine Performance". Jeep 4x4 Performance Handbook. Motorbooks Workshop Series. 242 (Second ed.). St. Paul, Minnesota, United States: MBI Publishing. p. 193. ISBN 978-0-7603-2687-9. Retrieved 2013-01-01. 1950–1971 F134 "Hurricane" Four-Cylinder F-head
  20. "Atwell-Wilson Motor Museum - Rolls-Royce Silver Wraith 1". Atwell-Wilson Motor Museum. 2008. Archived from the original on 2010-02-05. Retrieved 2011-01-14.
  21. "113: 1954 Rolls-Royce Silver Wraith 4½-Litre Touring Limousine CLW26". Bonhams.com (Auction catalogue). Bonhams. 2007-05-21. Retrieved 2013-01-08. Only the bore and stroke dimensions were shared with the pre-war overhead-valve Wraith engine, the major advantage of this ‘F-head’ layout being its large valves and generous water jacketing around the valve seats.
  22. "Autocar road test 1989 – Vanden Plas Princess 4-litre R 3,909 c.c.". Autocar: 406–410. 28 August 1964.
  23. Wilson, Hugo (1995). "The A-Z of Motorcycles". The Encyclopedia of the Motorcycle. London: Dorling Kindersley. p. 170. ISBN 0-7513-0206-6.
  24. Wilson, Hugo (1995). "The Directory of Motorcycles". The Encyclopedia of the Motorcycle. London: Dorling Kindersley. p. 212. ISBN 0-7513-0206-6.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.