Nicotinamide riboside
Nicotinamide riboside (NR, SR647) is a pyridine-nucleoside similar to vitamin B3, functioning as a precursor to nicotinamide adenine dinucleotide or NAD+.[1]
Names | |
---|---|
Other names
1-(β-D-Ribofuranosyl)nicotinamide; N-Ribosylnicotinamide | |
Identifiers | |
3D model (JSmol) |
|
ChEBI | |
ChemSpider | |
KEGG | |
PubChem CID |
|
UNII | |
CompTox Dashboard (EPA) |
|
| |
| |
Properties | |
C11H15N2O5+ | |
Molar mass | 255.25 g/mol |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). | |
Infobox references | |
Chemistry
While the molecular weight of nicotinamide riboside is 255.25 g/mol,[2] that of its chloride salt is 290.70 g/mol.[3][4] As such, 100 mg of nicotinamide riboside chloride provides 88 mg of nicotinamide riboside.
History
Nicotinamide riboside (NR) was first described in 1944 as a growth factor, termed Factor V, for Haemophilus influenza, a bacterium that lives in and depends on blood. Factor V, purified from blood, was shown to exist in three forms: NAD+, NMN and NR. NR was the compound that led to the most rapid growth of this bacterium.[5] H. influenza cannot grow on nicotinic acid, nicotinamide, tryptophan or aspartic acid, which were the previously known precursors of NAD+.[6]
In 2000, yeast Sir2 was shown to be an NAD+-dependent protein lysine deacetylase,[7] which led several research groups to probe yeast NAD+ metabolism for genes and enzymes that might regulate lifespan.[8]
Synthesis
Different biosynthetic pathways are responsible for converting the different B3 vitamins into NAD+. The enzyme nicotinamide phosphoribosyltransferase (Nampt) catalyzes the rate-limiting step of the two-step pathway converting nicotinamide to NAD+.[9] NR kinase enzymes can also function as a salvage pathway for NAD+, but this pathway is not essential.[9]
Commercialization
ChromaDex licensed patents in July 2012, and began to develop a process to bring NR to market.[10] ChromaDex has been in a patent dispute with Elysium Health over the rights to nicotinamide riboside supplements.[11]
See also
References
- Bogan, K.L., Brenner, C. (2008). "Nicotinic acid, nicotinamide, and nicotinamide riboside: a molecular evaluation of NAD+ precursor vitamins in human nutrition". Annu. Rev. Nutr. 28: 115–130. doi:10.1146/annurev.nutr.28.061807.155443. PMID 18429699.CS1 maint: multiple names: authors list (link)
- "Nicotinamide riboside". pubchem.ncbi.nlm.nih.gov.
- "GRAS Notices, GRN No. 635". www.accessdata.fda.gov. Retrieved 18 February 2019.
- "Spherix/ChromaDex GRAS submission" (PDF). FDA.gov. Retrieved 18 February 2019.
- Gingrich, W; Schlenk, F (June 1944). "Codehydrogenase I and Other Pyridinium Compounds as V-Factor for Hemophilus influenzae and H. parainfluenzae". Journal of Bacteriology. 47 (6): 535–50. doi:10.1128/JB.47.6.535-550.1944. PMC 373952. PMID 16560803.
- Belenky, P.; et al. (2007). "NAD+ Metabolism in Health and Disease". Trends in Biochemical Sciences. 32 (1): 12–19. doi:10.1016/j.tibs.2006.11.006. PMID 17161604.
- Imai, S.; et al. (2000). "Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase". Nature. 403 (6771): 795–800. Bibcode:2000Natur.403..795I. doi:10.1038/35001622. PMID 10693811. S2CID 2967911.
- Anderson; et al. (2003). "Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae". Nature. 423 (6936): 181–185. Bibcode:2003Natur.423..181A. doi:10.1038/nature01578. PMC 4802858. PMID 12736687.
- Fletcher RS, Lavery GG (2018). "The emergence of the nicotinamide riboside kinases in the regulation of NAD+ metabolism". Journal of Molecular Endocrinology. 61 (1): R107–R121. doi:10.1530/JME-18-0085. PMC 6145238. PMID 30307159.
- "ChromaDex Licenses Exclusive Patent Rights for Nicotinamide Riboside (NR) Vitamin Technologies". 2012-07-16. Retrieved 15 February 2019.
- Melody M. Bomgardner (2018). "Firms feud over purported age-fighting molecule". Chemical & Engineering News. 96 (33).