Polymorphism (materials science)

In materials science, polymorphism describes the existence of a solid material in more than one form or crystal structure. Polymorphism is a form of isomerism. Any crystalline material can exhibit the phenomenon. Allotropy refers to polymorphism for chemical elements. Polymorphism is of practical relevance to pharmaceuticals, agrochemicals, pigments, dyestuffs, foods, and explosives. According to IUPAC, a polymorphic transition is "A reversible transition of a solid crystalline phase at a certain temperature and pressure (the inversion point) to another phase of the same chemical composition with a different crystal structure."[1] Materials with two polymorphs are called dimorphic, with three polymorphs, trimorphic, etc.[2]

Examples

Many compounds exhibit polymorphism. It has been claimed that "every compound has different polymorphic forms, and that, in general, the number of forms known for a given compound is proportional to the time and money spent in research on that compound." [3][4][5]

Organic compounds

Calcite (on left) and Aragonite (on right), two forms of calcium carbonate. Note: the colors are from impurities.
Benzamide

The phenomenon was discovered in 1832 by Friedrich Wöhler and Justus von Liebig. They observed that the silky needles of freshly crystallized benzamide slowly converted to rhombic crystals.[6] Present-day analysis[7] identifies three polymorphs for benzamide: the least stable one, formed by flash cooling is the orthorhombic form II. This type is followed by the monoclinic form III (observed by Wöhler/Liebig). The most stable form is monoclinic form I. The hydrogen bonding mechanisms are the same for all three phases; however, they differ strongly in their pi-pi interactions.

Maleic acid

In 2006 a new polymorph of maleic acid was discovered, fully 124 years after the first crystal form was studied.[8] Maleic acid is manufactured on an industrial scale in the chemical industry. It forms salt found in medicine. The new crystal type is produced when a co-crystal of caffeine and maleic acid (2:1) is dissolved in chloroform and when the solvent is allowed to evaporate slowly. Whereas form I has monoclinic space group P21/c, the new form has space group Pc. Both polymorphs consist of sheets of molecules connected through hydrogen bonding of the carboxylic acid groups; but, in form I, the sheets alternate with respect of the net dipole moment, whereas, in form II, the sheets are oriented in the same direction.

1,3,5-Trinitrobenzene

After 125 years of study, 1,3,5-trinitrobenzene yielded a second polymorph. The usual form has the space group Pbca, but in 2004, a second polymorph was obtained in the space group Pca21 when the compound was crystallised in the presence of an additive, trisindane. This experiment shows that additives can induce the appearance of polymorphic forms.[9]

Other organic compounds

Acridine has been obtained as seven polymorphs. Glycine crystallizes as both monoclinic and hexagonal crystals. Polymorphism in organic compounds is often the result of conformational polymorphism.[10]

Inorganic compounds

Binary metal oxides

Polymorphism in binary metal oxides has attracted much attention because these materialss are of significant economic value. One set of famous examples have the composition SiO2, which form many polymorphs. Important ones include: α-quartz, β-quartz, tridymite, cristobalite, moganite, coesite, and stishovite.[11] [12]

Metal oxidesPhaseConditions of P and TStructure/Space Group
CrO2α phaseAmbient conditionsRutile-type Tetragonal (P42/mnm)
β phaseRT and 14 GPaCaCl2-type Orthorhombic
RT and 12±3 GPa
Cr2O3Corundum phaseAmbient conditionsCorundum-type Rhombohedral (R3c)
High pressure phaseRT and 35 GPaRh2O3-II type
Fe2O3α phaseAmbient conditionsCorundum-type Rhombohedral (R3c)
β phaseBelow 773 KBody-centered cubic (Ia3)
γ phaseUp to 933 KCubic spinel structure (Fd3m)
ε phase--Rhombic (Pna21)
Bi2O3α phaseAmbient conditionsMonoclinic (P21/c)
β phase603-923 K and 1 atmTetragonal
γ phase773-912 K or RT and 1 atmBody-centered cubic
δ phase912-1097 K and 1 atmFCC (Fm3m)
In2O3Bixbyite-type phaseAmbient conditionsCubic (Ia3)
Corundum-type15-25 GPa at 1273 KCorundum-type Hexagonal (R3c)
Rh2O3(II)-type100 GPa and 1000 KOrthorhombic
Al2O3α phaseAmbient conditionsCorundum-type Trigonal (R3c)
γ phase773 K and 1 atmCubic (Fd3m)
SnO2α phaseAmbient conditionsRutile-type Tetragonal (P42/mnm)
CaCl2-type phase15 KBar at 1073 KOrthorhombic, CaCl2-type (Pnnm)
α-PbO2-typeAbove 18 KBarα-PbO2-type (Pbcn)
TiO2RutileEquilibrium phaseRutile-type Tetragonal
AnataseMetastable phase (Not stable)[13]Tetragonal (I41/amd)
BrookiteMetastable phase (Not stable)[13]Orthorhombic (Pcab)
ZrO2Monoclinic phaseAmbient conditionsMonoclinic (P21/c)
Tetragonal phaseAbove 1443 KTetragonal (P42/nmc)
Fluorite-type phaseAbove 2643 KCubic (Fm3m)
MoO3α phase553-673 K & 1 atmOrthorhombic (Pbnm)
β phase553-673 K & 1 atmMonoclinic
h phaseHigh-pressure and high-temperature phaseHexagonal (P6a/m or P6a)
MoO3-II60 kbar and 973 KMonoclinic
WO3ε phaseUp to 220 KMonoclinic (Pc)
δ phase220-300 KTriclinic (P1)
γ phase300-623 KMonoclinic (P21/n)
β phase623-900 KOrthorhombic (Pnma)
α phaseAbove 900 KTetragonal (P4/ncc)
Other inorganic materials

Classical examples of polymorphism are the pair of minerals calcite and aragonite, both forms of calcium carbonate. While diamonds are traditionally cubic, hexagonal diamonds occur also.

Factors affecting polymorphism

According to Ostwald's rule, usually less stable polymorphs crystallize before the stable form. The concept hinges on the idea that unstable polymorphs more closely resemble the state in solution, and thus are kinetically advantaged. The founding case of fibrous vs rhombic benzamide illustrates the case. Another example is provided by two polymorphs of titanium dioxide.[13]

Polymorphs have disparate stabilities. Some convert rapidly at room (or any) temperature. Most polymorphs of organic molecules only differ by a few kJ/mol in lattice energy. Approximately 50% of known polymorph pairs differ by less than 2 kJ/mol and stability differences of more than 10 kJ/mol are rare.[14]

Polymorphism is affected the details of crystallisation. The solvent in all respects affects the nature of the polymorph, including concentration, other components of the solvent, i.e., species that inhibiting or promote certain growth patterns. A decisive factor is often the temperature of the solvent from which crystallisation is carried out.

Metastable polymorphs are not always reproducibly obtained, leading to cases of "disappearing polymorphs".[3][15][16]

In pharmaceuticals

Drugs receive regulatory approval for only a single polymorph. In a classic patent dispute, the GlaxoSmithKline defended its patent for the polymorph type II of the active ingredient in Zantac against competitors while that of the polymorph type I had already expired.[17] Polymorphism in drugs can also have direct medical implications since dissolution rates depend on the polymorph. Polymorphic purity of drug samples can be checked using techniques such as powder X-ray diffraction, IR/Raman spectroscopy, and utilizing the differences in their optical properties in some cases.[18]

Case studies

Ritonavir

The antiviral drug ritonavir exists as two polymorphs, which differ greatly in efficacy. Such issues were solved by reformulating the medicine into gelcaps and tablets, rather than the original capsules.[19]

Acetylsalicylic acid

A second polymorph of acetylsalicylic acid was reported only in 2005.[20][21] A new crystal type was found after attempted co-crystallization of aspirin and levetiracetam from hot acetonitrile. In form I, pairs of aspirin molecules form centrosymmetric dimers through the acetyl groups with the (acidic) methyl proton to carbonyl hydrogen bonds. In form II, each aspirin molecule forms the same hydrogen bonds, but with two neighbouring molecules instead of one. With respect to the hydrogen bonds formed by the carboxylic acid groups, both polymorphs form identical dimer structures. The aspirin polymorphs contain identical 2-dimensional sections and are therefore more precisely described as polytypes.[22]

Paracetamol

Paracetamol powder has poor compression properties, which poses difficulty in making tablets. A second polymorph was found with more suitable compressive propertiies.

Cortisone acetate

Cortisone acetate exists in at least five different polymorphs, four of which are unstable in water and change to a stable form.

Carbamazepine

Carbamazepine, estrogen, paroxetine,[23] and chloramphenicol also show polymorphism.

Polytypism

Polytypes are a special case of polymorphs, where multiple close-packed crystal structures differ in one dimension only. Polytypes have identical close-packed planes, but differ in the stacking sequence in the third dimension perpendicular to these planes. Silicon carbide (SiC) has more than 170 known polytypes, although most are rare. All the polytypes of SiC have virtually the same density and Gibbs free energy. The most common SiC polytypes are shown in Table 1.

Table 1: Some polytypes of SiC.[24]

Phase Structure Ramsdell Notation Stacking Sequence Comment
α-SiC hexagonal 2H AB Wurtzite form
α-SiC hexagonal 4H ABCB
α-SiC hexagonal 6H ABCACB The most stable and common form
α-SiC rhombohedral 15R ABCACBCABACABCB
β-SiC face-centered cubic 3C ABC Sphalerite or zinc blende form

A second group of materials with different polytypes are the transition metal dichalcogenides, layered materials such as molybdenum disulfide (MoS2). For these materials the polytypes have more distinct effects on material properties, e.g. for MoS2, the 1T polytype is metallic in character, while the 2H form is more semiconducting.[25] Another example is Tantalum disulfide, where the common 1T as well as 2H polytypes occur, but also more complex 'mixed coordination' types such as 4Hb and 6R, where the trigonal prismatic and the octahedral geometry layers are mixed.[26] Here, the 1T polytype exhibits a charge density wave, with distinct influence on the conductivity as a function of temperature, while the 2H polytype exhibits superconductivity.

ZnS and CdI2 are also polytypical.[27] It has been suggested that this type of polymorphism is due to kinetics where screw dislocations rapidly reproduce partly disordered sequences in a periodic fashion.

Theory

In terms of thermodynamics, two types of polymorphic behaviour are recognized. For a monotropic system, plots of the free energies of the various polymorphs against temperature do not cross before all polymorphs meltin other words, any transition from one polymorph to another below melting point will be irreversible. For an enantiotropic system, a plot of the free energy against temperature shows a crossing point threshold before the various melting points.[28] It may also be possible to revert interchangeably between the two polymorphs by heating or cooling, or through physical contact with a lower energy polymorph.

Solid phase transitions which transform reversibly without passing through the liquid or gaseous phases are called enantiotropic. In contrast, if the modifications are not convertible under these conditions, the system is monotropic. Experimental data are used to differentiate between enantiotropic and monotropic transitions and energy/temperature semi-quantitative diagrams can be drawn by applying several rules, principally the heat-of-transition rule, the heat-of-fusion rule and the density rule. These rules enable the deduction of the relative positions of the H and Gisobars in the E/T diagram. [1]

See also

References

  1. "Polymorphicc transition". IUPAC Goldbook. doi:10.1351/goldbook.P04748.
  2. "Definition of trimorphism - mindat.org glossary". www.mindat.org. Retrieved 2016-10-23.
  3. Crystal Engineering: The Design and Application of Functional Solids, Volume 539, Kenneth Richard Seddon, Michael Zaworotk 1999
  4. W. C. McCrone, in Physics and Chemistry of the Organic Solid State, eds. D. Fox, M. M. Labes and A. Weissberger, Interscience Publishers, London, 1965, vol. 2, pp. 725-767.
  5. Pharmaceutical Stress Testing: Predicting Drug Degradation, Second Edition Steven W. Baertschi, Karen M. Alsante, Robert A. Reed 2011 CRC Press
  6. Wöhler, F.; Liebig, J.; Ann (1832). "Untersuchungen über das Radikal der Benzoesäure". Annalen der Pharmacie (in German). Wiley. 3 (3): 249–282. doi:10.1002/jlac.18320030302. hdl:2027/hvd.hxdg3f. ISSN 0365-5490.
  7. Thun, Jürgen (2007). "Polymorphism in Benzamide: Solving a 175-Year-Old Riddle". Angewandte Chemie International Edition. 46 (35): 6729–6731. doi:10.1002/anie.200701383. PMID 17665385.
  8. Graeme M. Day; Andrew V. Trask; W. D. Samuel Motherwell; William Jones (2006). "Investigating the Latent Polymorphism of Maleic Acid". Chemical Communications. 1 (1): 54–56. doi:10.1039/b513442k. PMID 16353090.
  9. Thallapally PK, Jetti RK, Katz AK (2004). "Polymorphism of 1,3,5-trinitrobenzene Induced by a Trisindane Additive". Angewandte Chemie International Edition. 43 (9): 1149–1155. doi:10.1002/anie.200352253. PMID 14983460.
  10. Cruz-Cabeza, Aurora J.; Bernstein, Joel (2014). "Conformational Polymorphism". Chemical Reviews. 114 (4): 2170–2191. doi:10.1021/cr400249d. PMID 24350653.
  11. "Definition of polymorphism - mindat.org glossary". www.mindat.org. Retrieved 2016-10-23.
  12. "Polymorphism in nanocrystalline binary metal oxides", S. Sood, P.Gouma, Nanomaterials and Energy, 2(NME2), 1-15(2013).
  13. Anatase to Rutile Transformation(ART) summarized in the Journal of Materials Science 2011
  14. Nyman, Jonas; Day, Graeme M. (2015). "Static and lattice vibrational energy differences between polymorphs". CrystEngComm. 17 (28): 5154–5165. doi:10.1039/C5CE00045A.
  15. Bučar, D.-K.; Lancaster, R. W.; Bernstein, J. (2015). "Disappearing Polymorphs Revisited". Angewandte Chemie International Edition. 54 (24): 6972–6993. doi:10.1002/anie.201410356. PMC 4479028. PMID 26031248.
  16. Surov, Artem O.; Vasilev, Nikita A.; Churakov, Andrei V.; Stroh, Julia; Emmerling, Franziska; Perlovich, German L. (2019). "Solid Forms of Ciprofloxacin Salicylate: Polymorphism, Formation Pathways and Thermodynamic Stability". Crystal Growth & Design. 19 (5): 2979–2990. doi:10.1021/acs.cgd.9b00185.
  17. http://www.rsc.org/images/Shape%20shifters_tcm18-83943.pdf
  18. Thomas, Sajesh P.; Nagarajan, K.; Row, T. N. Guru (2012). "Polymorphism and tautomeric preference in fenobam and the utility of NLO response to detect polymorphic impurities". Chemical Communications. 48 (85): 10559–10561. doi:10.1039/C2CC34912D. PMID 23000909.
  19. Bauer J, et al. (2004). "Ritonavir: An Extraordinary Example of Conformational Polymorphism". Pharmaceutical Research. 18 (6): 859–866. doi:10.1023/A:1011052932607. PMID 11474792. S2CID 20923508.
  20. Peddy Vishweshwar; Jennifer A. McMahon; Mark Oliveira; Matthew L. Peterson & Michael J. Zaworotko (2005). "The Predictably Elusive Form II of Aspirin". J. Am. Chem. Soc. 127 (48): 16802–16803. doi:10.1021/ja056455b. PMID 16316223.
  21. Andrew D. Bond; Roland Boese; Gautam R. Desiraju (2007). "On the Polymorphism of Aspirin: Crystalline Aspirin as Intergrowths of Two "Polymorphic" Domains". Angewandte Chemie International Edition. 46 (4): 618–622. doi:10.1002/anie.200603373. PMID 17139692.
  22. "Polytypism - Online Dictionary of Crystallography". reference.iucr.org.
  23. "Disappearing Polymorphs and Gastrointestinal Infringement". blakes.com. 20 July 2012. Archived from the original on 20 July 2012.
  24. "The basics of crystallography and diffraction", Christopher Hammond, Second edition, Oxford science publishers, IUCr, page 28 ISBN 0 19 8505531.
  25. Li, Xiao; Zhu, Hongwei (2015-03-01). "Two-dimensional MoS2: Properties, preparation, and applications". Journal of Materiomics. 1 (1): 33–44. doi:10.1016/j.jmat.2015.03.003.
  26. Wilson, J.A.; Di Salvo, F. J.; Mahajan, S. (October 1974). "Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides". Advances in Physics. 50 (8): 1171–1248. doi:10.1080/00018730110102718. S2CID 218647397.
  27. C.E. Ryan, R.C. Marshall, J.J. Hawley, I. Berman & D.P. Considine, "The Conversion of Cubic to Hexagonal Silicon Carbide as a Function of Temperature and Pressure," U.S. Air Force, Physical Sciences Research Papers, #336, Aug 1967, p 1-26.
  28. Carletta, Andrea (2015). "Solid-State Investigation of Polymorphism and Tautomerism of Phenylthiazole-thione: A Combined Crystallographic, Calorimetric, and Theoretical Survey". Crystal Growth & Design. 15 (5): 2461–2473. doi:10.1021/acs.cgd.5b00237.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.