Théophile de Donder

Théophile Ernest de Donder (French: [də dɔ̃dɛʁ]; 19 August 1872 – 11 May 1957) was a Belgian mathematician and physicist famous for his work (published in 1923) in developing correlations between the Newtonian concept of chemical affinity and the Gibbsian concept of free energy.

Théophile de Donder
Théophile Ernest de Donder (1872 – 1957) at the 1927 Solvay Conference. Appearing in front of de Donder is Paul Dirac.
Born(1872-08-19)19 August 1872
Died11 May 1957(1957-05-11) (aged 84)
NationalityBelgian
Alma materUniversité Libre de Bruxelles
Known forBeing the father of irreversible thermodynamics
Scientific career
FieldsPhysicist and mathematician
InstitutionsUniversité Libre de Bruxelles
Academic advisorsHenri Poincaré
Doctoral studentsIlya Prigogine
Léon Van Hove
Théophile Lepage
InfluencesAlbert Einstein

Education

He received his doctorate in physics and mathematics from the Université Libre de Bruxelles in 1899, for a thesis entitled Sur la Théorie des Invariants Intégraux (On the Theory of Integral Invariants).[1]

Career

He was professor between 1911 and 1942, at the Université Libre de Bruxelles. Initially he continued the work of Henri Poincaré and Élie Cartan. From 1914 on, he was influenced by the work of Albert Einstein and was an enthusiastic proponent of the theory of relativity. He gained significant reputation in 1923, when he developed his definition of chemical affinity. He pointed out a connection between the chemical affinity and the Gibbs free energy.

He is considered the father of thermodynamics of irreversible processes.[2] De Donder’s work was later developed further by Ilya Prigogine. De Donder was an associate and friend of Albert Einstein. He was in 1927, one of the participants of the fifth Solvay Conference on Physics, that took place at the International Solvay Institute for Physics in Belgium.

Books by De Donder

  • Thermodynamic Theory of Affinity: A Book of Principles. Oxford, England: Oxford University Press (1936)
  • The Mathematical Theory of Relativity. Cambridge, MA: MIT (1927)[3]
  • Sur la théorie des invariants intégraux (thesis) (1899).
  • Théorie du champ électromagnétique de Maxwell-Lorentz et du champ gravifique d'Einstein (1917)
  • La gravifique Einsteinienne (1921)
  • Introduction à la gravifique einsteinienne (1925)[4]
  • Théorie mathématique de l'électricité (1925)[5]
  • Théorie des champs gravifiques (1926)[6]
  • Application de la gravifique einsteinienne (1930)
  • Théorie invariantive du calcul des variations (1931)[7]

See also

References

  1. Acad. Roy. Belg., Bull. Cl. Sc., page 169, 1968.
  2. Perrot, Pierre (1998). A to Z of Thermodynamics. Oxford University Press. ISBN 0-19-856556-9.
  3. Struik, D. J. (1930). "Review: The Mathematical Theory of Relativity, by Th. de Donder" (PDF). Bull. Amer. Math. Soc. 36 (1): 34. doi:10.1090/s0002-9904-1930-04878-8.
  4. Reynolds Jr., C. N. (1926). "Review: Introduction à la Gravifique einsteinienne, by Th. de Donder" (PDF). Bull. Amer. Math. Soc. 32 (5): 563. doi:10.1090/s0002-9904-1926-04273-7.
  5. Page, Leigh (1926). "Review: Théorie Mathématique de l'Électricité, by Th. de Donder" (PDF). Bull. Amer. Math. Soc. 32 (2): 174. doi:10.1090/s0002-9904-1926-04191-4.
  6. Reynolds Jr., C. N. (1929). "Review: Théorie des Champs Gravifiques, by Th. de Donder" (PDF). Bull. Amer. Math. Soc. 35 (6): 884. doi:10.1090/s0002-9904-1929-04828-6.
  7. Busemann, Herbert (1937). "Review: Théorie Invariantive du Calcul des Variations, by Th. de Donder" (PDF). Bull. Amer. Math. Soc. 43 (9): 598–599. doi:10.1090/s0002-9904-1937-06582-7.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.