Great grand 120-cell
In geometry, the great grand 120-cell or great grand polydodecahedron is a regular star 4-polytope with Schläfli symbol {5,5/2,3}. It is one of 10 regular Schläfli-Hess polytopes.
Great grand 120-cell | |
---|---|
Orthogonal projection | |
Type | Schläfli-Hess polytope |
Cells | 120 {5,5/2} |
Faces | 720 {5} |
Edges | 1200 |
Vertices | 120 |
Vertex figure | {5/2,3} |
Schläfli symbol | {5,5/2,3} |
Coxeter-Dynkin diagram | |
Symmetry group | H4, [3,3,5] |
Dual | Great icosahedral 120-cell |
Properties | Regular |
Related polytopes
It has the same edge arrangement as the small stellated 120-cell.
H3 | A2 / B3 / D4 | A3 / B2 |
---|---|---|
With its dual, it forms the compound of great grand 120-cell and great icosahedral 120-cell.
See also
- List of regular polytopes
- Convex regular 4-polytope
- Kepler-Poinsot polyhedron - regular star polyhedron
- Star polygon - regular star polygons
References
- Edmund Hess, (1883) Einleitung in die Lehre von der Kugelteilung mit besonderer Berücksichtigung ihrer Anwendung auf die Theorie der Gleichflächigen und der gleicheckigen Polyeder .
- H. S. M. Coxeter, Regular Polytopes, 3rd. ed., Dover Publications, 1973. ISBN 0-486-61480-8.
- John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 26, Regular Star-polytopes, pp. 404–408)
- Klitzing, Richard. "4D uniform polytopes (polychora) o3o5/2o5x - gaghi".
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.