Largest known prime number
The largest known prime number (as of December 2020) is 282,589,933 − 1, a number which has 24,862,048 digits when written in base 10. It was found via a computer volunteered by Patrick Laroche of the Great Internet Mersenne Prime Search (GIMPS) in 2018.[1]
A prime number is a positive integer, excluding 1, with no divisors other than 1 and itself. Euclid recorded a proof that there is no largest prime number, and many mathematicians and hobbyists continue to search for large prime numbers.
Many of the largest known primes are Mersenne primes, numbers that are one less than a power of two. As of December 2020, the eight largest known primes are Mersenne primes.[2] The last seventeen record primes were Mersenne primes.[3][4] The binary representation of any Mersenne prime is composed of all 1's, since the binary form of 2k - 1 is simply k 1's.[5]
The fast Fourier transform implementation of the Lucas–Lehmer primality test for Mersenne numbers is fast compared to other known primality tests for other kinds of numbers.
Current record
The record is currently held by 282,589,933 − 1 with 24,862,048 digits, found by GIMPS in December 2018.[1] Its value is:
148894445742041325547806458472397916603026273992795324185271289425213239361064475310309971132180337174752834401423587560 ...
(24,861,808 digits omitted)
... 062107557947958297531595208807192693676521782184472526640076912114355308311969487633766457823695074037951210325217902591[6]
The first and last 120 digits are shown above.
Prizes
The Great Internet Mersenne Prime Search (GIMPS) currently offers a US$3,000 research discovery award for participants who download and run their free software and whose computer discovers a new Mersenne prime having fewer than 100 million digits.
There are several prizes offered by the Electronic Frontier Foundation for record primes.[7] GIMPS is also coordinating its long-range search efforts for primes of 100 million digits and larger and will split the Electronic Frontier Foundation's US$150,000 prize with a winning participant.
The record passed one million digits in 1999, earning a US$50,000 prize.[8] In 2008, the record passed ten million digits, earning a US$100,000 prize and a Cooperative Computing Award from the Electronic Frontier Foundation.[7] Time called it the 29th top invention of 2008.[9] Both the US$50,000 and the US$100,000 prizes were won by participation in GIMPS. Additional prizes are being offered for the first prime number found with at least one hundred million digits and the first with at least one billion digits.[7]
History of largest known prime numbers
The following table lists the progression of the largest known prime number in ascending order.[3] Here Mn = 2n − 1 is the Mersenne number with exponent n. The longest record-holder known was M19 = 524,287, which was the largest known prime for 144 years. No records are known before 1456.
Number | Decimal expansion (only for numbers < M5000) |
Digits | Year found | Discoverer (see also Mersenne prime) |
---|---|---|---|---|
M13 | 8,191 | 4 | 1456 | Anonymous |
M17 | 131,071 | 6 | 1588 | Pietro Cataldi |
M19 | 524,287 | 6 | 1588 | Pietro Cataldi |
6,700,417 | 7 | 1732 | Leonhard Euler? Euler did not explicitly publish the primality of 6,700,417, but the techniques he had used to factorise 232 + 1 meant that he had already done most of the work needed to prove this, and some experts believe he knew of it.[10] | |
M31 | 2,147,483,647 | 10 | 1772 | Leonhard Euler |
67,280,421,310,721 | 14 | 1855 | Thomas Clausen | |
M127 | 170,141,183,460,469, |
39 | 1876 | Édouard Lucas |
20,988,936,657,440, |
44 | 1951 | Aimé Ferrier with a mechanical calculator; the largest record not set by computer. | |
180×(M127)2+1 | 5210644015679228794060694325390955853335898483908056458352
183851018372555735221 |
79 | 1951 | J. C. P. Miller & D. J. Wheeler[11] Using Cambridge's EDSAC computer |
M521 | 6864797660130609714981900799081393217269435300143305409394
4634591855431833976560521225596406614545549772963113914808 58037121987999716643812574028291115057151 |
157 | 1952 | |
M607 | 53113799281676709868958820655246862732959311772703192319944
4138200403559860852242739162502265229285668889329486246501 01534657933765270723940951997876658735194383127083539321903 1728127 |
183 | 1952 | |
M1279 | 10407932194664399081925240327364085538615262247266704805319
112350403608059673360298012239441732324184842421613954281007 79138356624832346490813990660567732076292412950938922034577 318334966158355047295942054768981121169367714754847886696250 138443826029173234888531116082853841658502825560466622483189 091880184706822220314052102669843548873295802887805086973618 6900714720710555703168729087 |
386 | 1952 | |
M2203 | 14759799152141802350848986227373817363120661453331697751477712
164785702978780789493774073370493892893827485075314964804772 8126483876025919181446336533026954049696120111343015690239609 398909022625932693502528140961498349938822283144859860183431 853623092377264139020949023183644689960821079548296376309423 6630945410832793769905399982457186322944729636418890623372171 723742105636440368218459649632948538696905872650486914434637 4575072804418236768135178520993486608471725794084223166780976 7022401199028017047489448742692474210882353680848507250224051 9452587542875349976558572670229633962575212637477897785501552 646522609988869914013540483809865681250419497686697771007 |
664 | 1952 | |
M2281 | 446087557183758429571151706402101809886208632412859901111991219963404685792
82047336911254526900398902615324593112431670239575870569367936479090349746 114707106525419335393812497822630794731241079887486904007027932842881031175 484410809487825249486676096958699812898264587759602897917153696250306842 961733170218475032458300917183210491605015762888660637214550170222592512522 40768296054271735739648129952505694124807207384768552936816667128448311908 776206067866638621902401185707368319018864792258104147140789353865624979681 787291276295949244119609613867139462798992750069549171397587960612238033935 373810346664944029510520590479686932553886479304409251041868170096401717641 33172418132836351 |
687 | 1952 | |
M3217 | 25911708601320262777624676792244153094181888755312542730397492316187401926658
63620862012095168004834065506952417331941774416895092388070174103777095975120 423130666240829163535179523111861548622656045476911275958487756105687579311910 17711408826252153849035830401185072116424747461823031471398340229288074545677 907941037288235820705892351068433882986888616658650280927692080339605869308 79050040950370987590211901837199162099400256893511313654882973911265679730324 19865172501164127035097054277734779723498216764434466683831193225400996489940 5179024162405651905448369080961606162574304236172186333941585242643120873726 6591962061753535748892894599629195183082621860853400937932839420261866586142 50325145077309627423537682293864940712770084607712421182308080413929808705750 47138252645714483793711250320818261265666490842516994539518877896136502484057 3937859459944433523118828012366040626246860921215034993758478229223714433962 8858485938215738821232393687046160677362909315071 |
969 | 1957 | |
M4423 | 2855425422282796139015635661021640083261642386447028891992474566022844003906
00653875954571505539843239754513915896150297878399377056071435169747221107988 7911982009884775313392142827720160590099045866862549890848157354224804090223 44297588352526004383890632616124076317387416881148592486188361873904175783145 6960169195743907655982801885990355784485910776836771755204340742877265780062 66759615970759521327828555662781678385691581844436444812511562428136742490459 363212810180276096088111401003377570363545725120924073646921576797146199387619 29656030268026179011813292501232304644443862230887792460937377301248168167242 44936744744885377701557830068808526481615130671448147902883666640622572746652 757871273746492310963750011709018907862633246195787957314256938050730561196775 8033808433338198750090296883193591309526982131114132239335649017848872898228 81562826008138312961436638459454311440437538215428712777456064478585641592133 2844358020642271469491309176271644704168967807009677359042980890961675045292 725800084350034483162829708990272864998199438764723457427626372969484830475 09171741861811306885187927486226122933413689280566343844666463265724761672756 60839105650528975713899320211121495795311427946254553305387067821067601768750 97786610046001460213840844802122505368905479374200309572209673295475072171811 5531871310231057902608580607 |
1,332 | 1961 | |
M9689 | 2,917 | 1963 | ||
M9941 | 2,993 | 1963 | ||
M11213 | 3,376 | 1963 | ||
M19937 | 6,002 | 1971 | Bryant Tuckerman | |
M21701 | 6,533 | 1978 | Laura A. Nickel and Landon Curt Noll[12] | |
M23209 | 6,987 | 1979 | Landon Curt Noll[12] | |
M44497 | 13,395 | 1979 | David Slowinski and Harry L. Nelson[12] | |
M86243 | 25,962 | 1982 | David Slowinski[12] | |
M132049 | 39,751 | 1983 | David Slowinski[12] | |
M216091 | 65,050 | 1985 | David Slowinski[12] | |
391581×2216193−1 | 65,087 | 1989 | A group, "Amdahl Six": John Brown, Landon Curt Noll, B. K. Parady, Gene Ward Smith, Joel F. Smith, Sergio E. Zarantonello.[13][14] Largest non-Mersenne prime that was the largest known prime when it was discovered. | |
M756839 | 227,832 | 1992 | David Slowinski and Paul Gage[12] | |
M859433 | 258,716 | 1994 | David Slowinski and Paul Gage[12] | |
M1257787 | 378,632 | 1996 | David Slowinski and Paul Gage[12] | |
M1398269 | 420,921 | 1996 | GIMPS, Joel Armengaud | |
M2976221 | 895,932 | 1997 | GIMPS, Gordon Spence | |
M3021377 | 909,526 | 1998 | GIMPS, Roland Clarkson | |
M6972593 | 2,098,960 | 1999 | GIMPS, Nayan Hajratwala | |
M13466917 | 4,053,946 | 2001 | GIMPS, Michael Cameron | |
M20996011 | 6,320,430 | 2003 | GIMPS, Michael Shafer | |
M24036583 | 7,235,733 | 2004 | GIMPS, Josh Findley | |
M25964951 | 7,816,230 | 2005 | GIMPS, Martin Nowak | |
M30402457 | 9,152,052 | 2005 | GIMPS, University of Central Missouri professors Curtis Cooper and Steven Boone | |
M32582657 | 9,808,358 | 2006 | GIMPS, Curtis Cooper and Steven Boone | |
M43112609 | 12,978,189 | 2008 | GIMPS, Edson Smith | |
M57885161 | 17,425,170 | 2013 | GIMPS, Curtis Cooper | |
M74207281 | 22,338,618 | 2016 | GIMPS, Curtis Cooper | |
M77232917 | 23,249,425 | 2017 | GIMPS, Jonathan Pace | |
M82589933 | 24,862,048 | 2018 | GIMPS, Patrick Laroche | |
GIMPS found the fifteen latest records (all of them Mersenne primes) on ordinary computers operated by participants around the world.
The twenty largest known prime numbers
A list of the 5,000 largest known primes is maintained by Chris K. Caldwell,[15][16] of which the twenty largest are listed below.
Rank | Number | Discovered | Digits | Ref |
---|---|---|---|---|
1 | 282589933 − 1 | 2018-12-07 | 24,862,048 | [1] |
2 | 277232917 − 1 | 2017-12-26 | 23,249,425 | [17] |
3 | 274207281 − 1 | 2016-01-07 | 22,338,618 | [18] |
4 | 257885161 − 1 | 2013-01-25 | 17,425,170 | [19] |
5 | 243112609 − 1 | 2008-08-23 | 12,978,189 | [20] |
6 | 242643801 − 1 | 2009-06-04 | 12,837,064 | [21] |
7 | 237156667 − 1 | 2008-09-06 | 11,185,272 | [20] |
8 | 232582657 − 1 | 2006-09-04 | 9,808,358 | [22] |
9 | 10223 × 231172165 + 1 | 2016-10-31 | 9,383,761 | [23] |
10 | 230402457 − 1 | 2005-12-15 | 9,152,052 | [24] |
11 | 225964951 − 1 | 2005-02-18 | 7,816,230 | [25] |
12 | 224036583 − 1 | 2004-05-15 | 7,235,733 | [26] |
13 | 220996011 − 1 | 2003-11-17 | 6,320,430 | [27] |
14 | 10590941048576 + 1 | 2018-10-31 | 6,317,602 | [28] |
15 | 9194441048576 + 1 | 2017-08-29 | 6,253,210 | [29] |
16 | 168451 × 219375200 + 1 | 2017-09-17 | 5,832,522 | [30] |
17 | 1234471048576 − 123447524288 + 1 | 2017-02-23 | 5,338,805 | [31] |
18 | 7 × 66772401 + 1 | 2019-09-09 | 5,269,954 | [32] |
19 | 8508301 × 217016603 − 1 | 2018-03-21 | 5,122,515 | [33] |
20 | 6962 × 312863120 − 1 | 2020-02-29 | 4,269,952 | [34] |
See also
References
- "GIMPS Project Discovers Largest Known Prime Number: 282,589,933-1". Mersenne Research, Inc. 21 December 2018. Retrieved 21 December 2018.
- Caldwell, Chris. "The largest known primes - Database Search Output". Prime Pages. Retrieved June 3, 2018.
- Caldwell, Chris. "The Largest Known Prime by Year: A Brief History". Prime Pages. Retrieved January 20, 2016.
- The last non-Mersenne to be the largest known prime, was 391,581 ⋅ 2216,193 − 1; see also The Largest Known Prime by Year: A Brief History by Caldwell.
- "Perfect Numbers". Penn State University. Retrieved 6 October 2019.
An interesting side note is about the binary representations of those numbers...
- https://www.mersenne.org/primes/press/M82589933.html
- "Record 12-Million-Digit Prime Number Nets $100,000 Prize". Electronic Frontier Foundation. Electronic Frontier Foundation. October 14, 2009. Retrieved November 26, 2011.
- Electronic Frontier Foundation, Big Prime Nets Big Prize.
- "Best Inventions of 2008 - 29. The 46th Mersenne Prime". Time. Time Inc. October 29, 2008. Retrieved January 17, 2012.
- Edward Sandifer, C. (19 November 2014). How Euler Did Even More. ISBN 9780883855843.
- J. Miller, Large Prime Numbers. Nature 168, 838 (1951).
- Landon Curt Noll, Large Prime Number Found by SGI/Cray Supercomputer.
- Letters to the Editor. The American Mathematical Monthly 97, no. 3 (1990), p. 214. Accessed May 22, 2020.
- Proof-code: Z, The Prime Pages.
- "The Prime Database: The List of Largest Known Primes Home Page". primes.utm.edu/primes. Chris K. Caldwell. Retrieved 30 September 2017.
- "The Top Twenty: Largest Known Primes". Chris K. Caldwell. Retrieved 3 January 2018.
- "GIMPS Project Discovers Largest Known Prime Number: 277,232,917-1". mersenne.org. Great Internet Mersenne Prime Search. Retrieved 3 January 2018.
- "GIMPS Project Discovers Largest Known Prime Number: 274,207,281-1". mersenne.org. Great Internet Mersenne Prime Search. Retrieved 29 September 2017.
- "GIMPS Discovers 48th Mersenne Prime, 257,885,161-1 is now the Largest Known Prime". mersenne.org. Great Internet Mersenne Prime Search. 5 February 2013. Retrieved 29 September 2017.
- "GIMPS Discovers 45th and 46th Mersenne Primes, 243,112,609-1 is now the Largest Known Prime". mersenne.org. Great Internet Mersenne Prime Search. 15 September 2008. Retrieved 29 September 2017.
- "GIMPS Discovers 47th Mersenne Prime, 242,643,801-1 is newest, but not the largest, known Mersenne Prime". mersenne.org. Great Internet Mersenne Prime Search. 12 April 2009. Retrieved 29 September 2017.
- "GIMPS Discovers 44th Mersenne Prime, 232,582,657-1 is now the Largest Known Prime". mersenne.org. Great Internet Mersenne Prime Search. 11 September 2006. Retrieved 29 September 2017.
- "PrimeGrid's Seventeen or Bust Subproject" (PDF). primegrid.com. PrimeGrid. Retrieved 30 September 2017.
- "GIMPS Discovers 43rd Mersenne Prime, 230,402,457-1 is now the Largest Known Prime". mersenne.org. Great Internet Mersenne Prime Search. 24 December 2005. Retrieved 29 September 2017.
- "GIMPS Discovers 42nd Mersenne Prime, 225,964,951-1 is now the Largest Known Prime". mersenne.org. Great Internet Mersenne Prime Search. 27 February 2005. Retrieved 29 September 2017.
- "GIMPS Discovers 41st Mersenne Prime, 224,036,583-1 is now the Largest Known Prime". mersenne.org. Great Internet Mersenne Prime Search. 28 May 2004. Retrieved 29 September 2017.
- "GIMPS Discovers 40th Mersenne Prime, 220,996,011-1 is now the Largest Known Prime". mersenne.org. Great Internet Mersenne Prime Search. 2 December 2003. Retrieved 29 September 2017.
- "PrimeGrid's Generalized Fermat Prime Search" (PDF). primegrid.com. PrimeGrid. Retrieved 7 November 2018.
- "PrimeGrid's Generalized Fermat Prime Search" (PDF). primegrid.com. PrimeGrid. Retrieved 30 September 2017.
- "PrimeGrid's Prime Sierpinski Problem" (PDF). primegrid.com. PrimeGrid. Retrieved 29 September 2017.
- "The Prime Database: Phi(3,-123447^524288)". primes.utm.edu. The Prime Pages. Retrieved 30 September 2017.
- "The Prime Database: 7*6^6772401+1". primes.utm.edu. The Prime Pages=12 September 2019.
- "PrimeGrid's Woodall Prime Search" (PDF). primegrid.com. PrimeGrid. Retrieved 2 April 2018.
- "The Prime Database: 6962*31^2863120-1". primes.utm.edu. The Prime Pages. Retrieved 6 April 2020.