53 (number)
53 (fifty-three) is the natural number following 52 and preceding 54. It is the 16th prime number.
| ||||
---|---|---|---|---|
[[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] | ||||
Cardinal | fifty-three | |||
Ordinal | 53rd (fifty-third) | |||
Factorization | prime | |||
Prime | 16th | |||
Divisors | 1, 53 | |||
Greek numeral | ΝΓ´ | |||
Roman numeral | LIII | |||
Binary | 1101012 | |||
Ternary | 12223 | |||
Octal | 658 | |||
Duodecimal | 4512 | |||
Hexadecimal | 3516 |
In mathematics
- Fifty-three is the 16th prime number. It is also an Eisenstein prime, and a Sophie Germain prime.[1]
- The sum of the first 53 primes is 5830, which is divisible by 53, a property shared by few other numbers.[2][3]
- 53 written in hexadecimal is 35, that is, the same characters used in the decimal representation, but reversed. Four additional multiples of 53 share this property: 371 = 17316, 5141 = 141516, 99481 = 1849916, and 8520280 = 082025816. Apart from the trivial case of single-digit decimals, no other number has this property.[4]
- 53 cannot be expressed as the sum of any integer and its base-10 digits, making 53 a self number.[5]
- 53 is the smallest prime number that does not divide the order of any sporadic group.
In science
- The atomic number of iodine
Astronomy
- Messier object M53, a magnitude 8.5 globular cluster in the constellation Coma Berenices
- The New General Catalogue object NGC 53, a magnitude 12.6 barred spiral galaxy in the constellation Tucana
In other fields
Fifty-three is:
- The racing number of Herbie, a fictional Volkswagen Beetle with a mind of his own, first appearing in the 1968 film The Love Bug
- The code for international direct dial phone calls to Cuba
- 53 Days is a northeastern USA rock band
- 53 Days a novel by Georges Perec
- In How the Grinch Stole Christmas!, and its animated TV special the Grinch says he's put up with the Whos' Christmas cheer for 53 years.
- Fictional 53rd Precinct in the Bronx was found in the TV comedy "Car 54, Where Are You?"
- "53rd & 3rd" a song by the Ramones
- The number of Hail Mary beads on a standard, five decade Catholic Rosary (the Dominican Rosary).[6]
- The number of bytes in an Asynchronous Transfer Mode packet.
- UDP and TCP port number for the Domain Name System protocol.
- 53-TET (53 tone, equal temperament) is a musical temperament that has a fifth that is closer to pure than our current system.
- 53 More Things To Do In Zero Gravity is a book mentioned in The Hitchhiker's Guide to the Galaxy
Sports
- The maximum number of players on a National Football League roster
- Most points by a rookie in an NBA playoff game, by Philadelphia's Wilt Chamberlain, 1960
- Most field goals (three-game series, NBA playoffs), by Michael Jordan, 1992
See also
References
- Sloane, N. J. A. (ed.). "Sequence A005384 (Sophie Germain primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-30.
- Sloane, N. J. A. (ed.). "Sequence A045345 (Numbers n such that n divides sum of first n primes A007504(n).)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- Puzzle 31.- The Average Prime number, APN(k) = S(Pk)/k from The Prime Puzzles & Problems Connection website
- "elementary number theory - Decimal/hex palindromes: why multiples of 53?". Stack Exchange. June 16, 2015. Retrieved 29 September 2018.
- Sloane, N. J. A. (ed.). "Sequence A003052 (Self numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-30.
- https://www.rosaryworkshop.com/HISTORY-OriginPrayers.html
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.