List of chaotic maps

In mathematics, a chaotic map is a map (= evolution function) that exhibits some sort of chaotic behavior. Maps may be parameterized by a discrete-time or a continuous-time parameter. Discrete maps usually take the form of iterated functions. Chaotic maps often occur in the study of dynamical systems.

Chaotic maps often generate fractals. Although a fractal may be constructed by an iterative procedure, some fractals are studied in and of themselves, as sets rather than in terms of the map that generates them. This is often because there are several different iterative procedures to generate the same fractal.

List of chaotic maps

MapTime domainSpace domainNumber of space dimensionsNumber of parametersAlso known as
3-cells CNN systemcontinuousreal3
2D circular chaotic map[1]discretereal21
2D Lorenz system [2]discretereal21
2D Rational chaotic map [3]discreterational22
Van der Pol system [4]continuousreal22
ACT chaotic attractor [5]continuousreal3
Aizawa chaotic attractor [6]continuousreal3
Arneodo chaotic system[7]continuousreal3
Arnold's cat mapdiscretereal20
Baker's mapdiscretereal20
Basin chaotic map[8]discretereal2
Beta Chaotic Map [9]12
Bogdanov mapdiscretereal23
Brusselatorcontinuousreal3
Burke-Shaw chaotic attractor[10]continuousreal32
Chen chaotic attractor[11]continuousreal3
Chen-Celikovsky system [12]continuousreal3
Chen-Lee systemcontinuousreal3
Chossat-Golubitsky symmetry map
Chua circuit[13]continuousreal33
Circle mapdiscretereal12
Complex quadratic mapdiscretecomplex11gives rise to the Mandelbrot set
Complex squaring mapdiscretecomplex10acts on the Julia set for the squaring map.
Complex cubic mapdiscretecomplex12
Clifford fractal map[14]discretereal24
Degenerate Double Rotor map
De Jong fractal map[15]discretereal24
Delayed-Logistic system[16]discretereal21
Double rotor map
Duffing mapdiscretereal22Holmes chaotic map
Duffing equationcontinuousreal25 (3 independent)
Dyadic transformationdiscretereal102x mod 1 map, Bernoulli map, doubling map, sawtooth map
Exponential mapdiscretecomplex21
Feigenbaum strange nonchaotic map[17]discretereal3
Finance system[18]continuousreal3
Folded-Towel hyperchaotic map[19]continuousreal3
Fractal-Dream system[20]discretereal2
Gauss mapdiscretereal1mouse map, Gaussian map
Generalized Baker map
Genesio-Tesi chaotic attractor[21]continuousreal3
Gingerbreadman map[22]discretereal2
Grinch dragon fractaldiscretereal2
Gumowski/Mira map[23]discretereal2
Hadley chaotic circulationcontinuousreal30
Half-inverted Rössler attractor[24]
Halvorsen chaotic attractor[25]continuousreal3
Hénon mapdiscretereal22
Hénon with 5th order polynomial
Hindmarsh-Rose neuronal modelcontinuousreal38
Hitzl-Zele map
Horseshoe mapdiscretereal21
Hopa-Jong fractal[26]discretereal2
Hopalong orbit fractal[27]discretereal2
Hyper Logistic map[28]discretereal2
Hyperchaotic Chen system[29]continuousreal3
Hyper Newton-Leipnik systemcontinuousreal4
Hyper-Lorenz chaotic attractorcontinuousreal4
Hyper-Lu chaotic system[30]continuousreal4
Hyper-Rössler chaotic attractor[31]continuousreal4
Hyperchaotic attractor[32]continuousreal4
Ikeda chaotic attractor[33]continuousreal3
Ikeda mapdiscretereal23Ikeda fractal map
Interval exchange mapdiscretereal1variable
Kaplan-Yorke mapdiscretereal21
Knot fractal map[34]discretereal2
Knot-Holder chaotic oscillator [35]continuousreal3
Kuramoto–Sivashinsky equationcontinuousreal
Lambić map [36]discretediscrete1
Li symmetrical toroidal chaos [37]continuousreal3
Linear map on unit square
Logistic mapdiscretereal11
Lorenz systemcontinuousreal33
Lorenz system's Poincaré return mapdiscretereal23
Lorenz 96 modelcontinuousrealarbitrary1
Lotka-Volterra systemcontinuousreal34
Lozi map [38]discretereal2
Moore-Spiegel chaotic oscillator [39]continuousreal3
Scroll-Attractor [40]continuousreal3
Jerk Circuit [41]continuousreal3
Newton-Leipnik systemcontinuousreal3
Nordmark truncated map
Nosé-Hoover systemcontinuousreal3
Novel chaotic system [42]continuousreal3
Pickover fractal map [43]continuousreal3
Pomeau-Manneville maps for intermittent chaos discretereal1 or 2Normal-form maps for intermittency (Types I, II and III)
Polynom Type-A fractal map [44]continuousreal33
Polynom Type-B fractal map [45]continuousreal36
Polynom Type-C fractal map [46]continuousreal318
Pulsed rotor
Quadrup-Two orbit fractal [47]discretereal23
Quasiperiodicity map
Mikhail Anatoly chaotic attractorcontinuousreal32
Random Rotate map
Rayleigh-Benard chaotic oscillatorcontinuousreal33
Rikitake chaotic attractor [48]continuousreal33
Rössler attractorcontinuousreal33
Rucklidge system [49]continuousreal32
Sakarya chaotic attractor [50]continuousreal32
Shaw-Pol chaotic oscillator [51][52]continuousreal33
Shimizu-Morioka system [53]continuousreal32
Shobu-Ose-Mori piecewise-linear mapdiscretereal1piecewise-linear approximation for Pomeau-Manneville Type I map
Sinai map -
Sprott B chaotic system [54][55]continuousreal32
Sprott C chaotic system [56][57]continuousreal33
Sprott-Linz A chaotic attractor [58][59][60]continuousreal30
Sprott-Linz B chaotic attractor [61][62][63]continuousreal30
Sprott-Linz C chaotic attractor [64][65][66]continuousreal30
Sprott-Linz D chaotic attractor [67][68][69]continuousreal31
Sprott-Linz E chaotic attractor [70][71][72]continuousreal31
Sprott-Linz F chaotic attractor [73][74][75]continuousreal31
Sprott-Linz G chaotic attractor [76][77][78]continuousreal31
Sprott-Linz H chaotic attractor [79][80][81]continuousreal31
Sprott-Linz I chaotic attractor [82][83][84]continuousreal31
Sprott-Linz J chaotic attractor [85][86][87]continuousreal31
Sprott-Linz K chaotic attractor [88][89][90]continuousreal31
Sprott-Linz L chaotic attractor [91][92][93]continuousreal32
Sprott-Linz M chaotic attractor [94][95][96]continuousreal31
Sprott-Linz N chaotic attractor [97][98][99]continuousreal31
Sprott-Linz O chaotic attractor [100][101][102]continuousreal31
Sprott-Linz P chaotic attractor [103][104][105]continuousreal31
Sprott-Linz Q chaotic attractor [106][107][108]continuousreal32
Sprott-Linz R chaotic attractor [109][110][111]continuousreal32
Sprott-Linz S chaotic attractor [112][113][114]continuousreal31
Standard map, Kicked rotordiscretereal21Chirikov standard map, Chirikov-Taylor map
Strizhak-Kawczynski chaotic oscillator [115][116]continuousreal39
Symmetric Flow attractor [117]continuousreal31
Symplectic map
Tangent map
Thomas' cyclically symmetric attractor [118]continuousreal31
Tent mapdiscretereal1
Tinkerbell mapdiscretereal24
Triangle map
Ueda chaotic oscillator [119]continuousreal33
Van der Pol oscillatorcontinuousreal13
Willamowski-Rössler model [120]continuousreal310
WINDMI chaotic attractor [121][122][123]continuousreal12
Zaslavskii mapdiscretereal24
Zaslavskii rotation map
Zeraoulia-Sprott map [124]discretereal22

List of fractals

References

  1. Chaos from Euler Solution of ODEs
  2. Chaos from Euler Solution of ODEs
  3. On the dynamics of a new simple 2-D rational discrete mapping
  4. Chaos from Euler Solution of ODEs
  5. http://www.yangsky.us/ijcc/pdf/ijcc83/IJCC823.pdf%5B%5D
  6. The Aizawa attractor
  7. Local Stability and Hopf Bifurcation Analysis of the Arneodo’s System
  8. Basin of attraction Archived 2014-07-01 at the Wayback Machine
  9. Image encryption based on new Beta chaotic maps
  10. 1981 The Burke & Shaw system
  11. A new chaotic attractor coined
  12. A new chaotic attractor coined
  13. http://www.scholarpedia.org/article/Chua_circuit Chua Circuit
  14. Clifford Attractors
  15. Peter de Jong Attractors
  16. A discrete population model of delayed regulation
  17. Irregular Attractors
  18. A New Finance Chaotic Attractor
  19. Hyperchaos Archived 2015-12-22 at the Wayback Machine
  20. Visions of Chaos 2D Strange Attractor Tutorial
  21. A new chaotic system and beyond: The generalized Lorenz-like system
  22. Gingerbreadman map
  23. Mira Fractals
  24. Half-inverted tearing
  25. Halvorsen: A tribute to Dr. Edward Norton Lorenz
  26. Peter de Jong Attractors
  27. Hopalong orbit fractal
  28. Irregular Attractors
  29. Global chaos synchronization of hyperchaotic chen system by sliding model control
  30. Hyper-Lu system
  31. The first hyperchaotic system
  32. Hyperchaotic attractor Archived 2015-12-22 at the Wayback Machine
  33. Attractors
  34. Knot fractal map Archived 2015-12-22 at the Wayback Machine
  35. A new discrete chaotic map based on the composition of permutations
  36. A 3D symmetrical toroidal chaos
  37. Lozi maps
  38. Moore-Spiegel Attractor
  39. A new chaotic system and beyond: The generalized lorenz-like system
  40. A New Chaotic Jerk Circuit
  41. Chaos Control and Hybrid Projective Synchronization of a Novel Chaotic System
  42. Pickover
  43. Polynomial Type-A
  44. Polynomial Type-B
  45. Polynomial Type-C
  46. Quadrup Two Orbit Fractal
  47. Rikitake chaotic attractor Archived 2010-06-20 at the Wayback Machine
  48. Description of strange attractors using invariants of phase-plane
  49. Skarya Archived 2015-12-22 at the Wayback Machine
  50. Van der Pol Oscillator Equations
  51. Shaw-Pol chaotic oscillator Archived 2015-12-22 at the Wayback Machine
  52. The Shimiziu-Morioka System
  53. Sprott B chaotic attractor Archived 2007-02-27 at the Wayback Machine
  54. Chaos Blog - Sprott B system Archived 2015-12-22 at the Wayback Machine
  55. Sprott C chaotic attractor Archived 2007-02-27 at the Wayback Machine
  56. Chaos Blog - Sprott C system Archived 2015-12-22 at the Wayback Machine
  57. Sprott's Gateway - Sprott-Linz A chaotic attractor Archived 2007-02-27 at the Wayback Machine
  58. A new chaotic system and beyond: The generalized Lorenz-like System
  59. Chaos Blog - Sprott-Linz A chaotic attractor Archived 2015-12-22 at the Wayback Machine
  60. Sprott's Gateway - Sprott-Linz B chaotic attractor Archived 2007-02-27 at the Wayback Machine
  61. A new chaotic system and beyond: The generalized Lorenz-like System
  62. Chaos Blog - Sprott-Linz B chaotic attractor Archived 2015-12-22 at the Wayback Machine
  63. Sprott's Gateway - Sprott-Linz C chaotic attractor Archived 2007-02-27 at the Wayback Machine
  64. A new chaotic system and beyond: The generalized Lorenz-like System
  65. Chaos Blog - Sprott-Linz C chaotic attractor Archived 2015-12-22 at the Wayback Machine
  66. Sprott's Gateway - Sprott-Linz D chaotic attractor Archived 2007-02-27 at the Wayback Machine
  67. A new chaotic system and beyond: The generalized Lorenz-like System
  68. Chaos Blog - Sprott-Linz D chaotic attractor Archived 2015-12-22 at the Wayback Machine
  69. Sprott's Gateway - Sprott-Linz E chaotic attractor Archived 2007-02-27 at the Wayback Machine
  70. A new chaotic system and beyond: The generalized Lorenz-like System
  71. Chaos Blog - Sprott-Linz E chaotic attractor Archived 2015-12-22 at the Wayback Machine
  72. Sprott's Gateway - Sprott-Linz F chaotic attractor Archived 2007-02-27 at the Wayback Machine
  73. A new chaotic system and beyond: The generalized Lorenz-like System
  74. Chaos Blog - Sprott-Linz F chaotic attractor Archived 2015-12-22 at the Wayback Machine
  75. Sprott's Gateway - Sprott-Linz G chaotic attractor Archived 2007-02-27 at the Wayback Machine
  76. A new chaotic system and beyond: The generalized Lorenz-like System
  77. Chaos Blog - Sprott-Linz G chaotic attractor Archived 2015-12-22 at the Wayback Machine
  78. Sprott's Gateway - Sprott-Linz H chaotic attractor Archived 2007-02-27 at the Wayback Machine
  79. A new chaotic system and beyond: The generalized Lorenz-like System
  80. Chaos Blog - Sprott-Linz H chaotic attractor Archived 2015-12-22 at the Wayback Machine
  81. Sprott's Gateway - Sprott-Linz I chaotic attractor Archived 2007-02-27 at the Wayback Machine
  82. A new chaotic system and beyond: The generalized Lorenz-like System
  83. Chaos Blog - Sprott-Linz I chaotic attractor Archived 2015-12-22 at the Wayback Machine
  84. Sprott's Gateway - Sprott-Linz J chaotic attractor Archived 2007-02-27 at the Wayback Machine
  85. A new chaotic system and beyond: The generalized Lorenz-like System
  86. Chaos Blog - Sprott-Linz J chaotic attractor Archived 2015-12-22 at the Wayback Machine
  87. Sprott's Gateway - Sprott-Linz K chaotic attractor Archived 2007-02-27 at the Wayback Machine
  88. A new chaotic system and beyond: The generalized Lorenz-like System
  89. Chaos Blog - Sprott-Linz K chaotic attractor Archived 2015-12-22 at the Wayback Machine
  90. Sprott's Gateway - Sprott-Linz L chaotic attractor Archived 2007-02-27 at the Wayback Machine
  91. A new chaotic system and beyond: The generalized Lorenz-like System
  92. Chaos Blog - Sprott-Linz L chaotic attractor Archived 2015-12-22 at the Wayback Machine
  93. Sprott's Gateway - Sprott-Linz M chaotic attractor Archived 2007-02-27 at the Wayback Machine
  94. A new chaotic system and beyond: The generalized Lorenz-like System
  95. Chaos Blog - Sprott-Linz M chaotic attractor Archived 2015-12-22 at the Wayback Machine
  96. Sprott's Gateway - Sprott-Linz N chaotic attractor Archived 2007-02-27 at the Wayback Machine
  97. A new chaotic system and beyond: The generalized Lorenz-like System
  98. Chaos Blog - Sprott-Linz N chaotic attractor Archived 2015-12-22 at the Wayback Machine
  99. Sprott's Gateway - Sprott-Linz O chaotic attractor Archived 2007-02-27 at the Wayback Machine
  100. A new chaotic system and beyond: The generalized Lorenz-like System
  101. Chaos Blog - Sprott-Linz O chaotic attractor Archived 2015-12-22 at the Wayback Machine
  102. Sprott's Gateway - Sprott-Linz P chaotic attractor Archived 2007-02-27 at the Wayback Machine
  103. A new chaotic system and beyond: The generalized Lorenz-like System
  104. Chaos Blog - Sprott-Linz P chaotic attractor Archived 2015-12-22 at the Wayback Machine
  105. Sprott's Gateway - Sprott-Linz Q chaotic attractor Archived 2007-02-27 at the Wayback Machine
  106. A new chaotic system and beyond: The generalized Lorenz-like System
  107. Chaos Blog - Sprott-Linz Q chaotic attractor Archived 2015-12-22 at the Wayback Machine
  108. Sprott's Gateway - Sprott-Linz R chaotic attractor Archived 2007-02-27 at the Wayback Machine
  109. A new chaotic system and beyond: The generalized Lorenz-like System
  110. Chaos Blog - Sprott-Linz R chaotic attractor Archived 2015-12-22 at the Wayback Machine
  111. Sprott's Gateway - Sprott-Linz S chaotic attractor Archived 2007-02-27 at the Wayback Machine
  112. A new chaotic system and beyond: The generalized Lorenz-like System
  113. Chaos Blog - Sprott-Linz S chaotic attractor Archived 2015-12-22 at the Wayback Machine
  114. Strizhak-Kawczynski chaotic oscillator
  115. Chaos Blog - Strizhak-Kawczynski chaotic oscillator Archived 2015-12-22 at the Wayback Machine
  116. Sprott's Gateway - A symmetric chaotic flow
  117. http://sprott.physics.wisc.edu/chaostsa/ Sprott's Gateway - Chaos and Time-Series Analysis
  118. Oscillator of Ueda
  119. Internal fluctuations in a model of chemical chaos
  120. Synchronization of Chaotic Fractional-Order WINDMI Systems via Linear State Error Feedback Control
  121. Adaptive Backstepping Controller Design for the Anti-Synchronization of Identical WINDMI Chaotic Systems with Unknown Parameters and its SPICE Implementation
  122. Chen, Guanrong; Kudryashova, Elena V.; Kuznetsov, Nikolay V.; Leonov, Gennady A. (2016). "Dynamics of the Zeraoulia–Sprott Map Revisited". International Journal of Bifurcation and Chaos. 26 (7): 1650126–21. arXiv:1602.08632. Bibcode:2016IJBC...2650126C. doi:10.1142/S0218127416501261.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.