List of pitch intervals
Below is a list of intervals expressible in terms of a prime limit (see Terminology), completed by a choice of intervals in various equal subdivisions of the octave or of other intervals.
For commonly encountered harmonic or melodic intervals between pairs of notes in contemporary Western music theory, without consideration of the way in which they are tuned, see Interval (music) § Main intervals.
Terminology
- The prime limit[1] henceforth referred to simply as the limit, is the largest prime number occurring in the factorizations of the numerator and denominator of the frequency ratio describing a rational interval. For instance, the limit of the just perfect fourth (4:3) is 3, but the just minor tone (10:9) has a limit of 5, because 10 can be factored into 2 × 5 (and 9 into 3 × 3). There exists another type of limit, the odd limit, a concept used by Harry Partch (bigger of odd numbers obtained after dividing numerator and denominator by highest possible powers of 2), but it is not used here. The term "limit" was devised by Partch.[1]
- By definition, every interval in a given limit can also be part of a limit of higher order. For instance, a 3-limit unit can also be part of a 5-limit tuning and so on. By sorting the limit columns in the table below, all intervals of a given limit can be brought together (sort backwards by clicking the button twice).
- Pythagorean tuning means 3-limit intonation—a ratio of numbers with prime factors no higher than three.
- Just intonation means 5-limit intonation—a ratio of numbers with prime factors no higher than five.
- Septimal, undecimal, tridecimal, and septendecimal mean, respectively, 7, 11, 13, and 17-limit intonation.
- Meantone refers to meantone temperament, where the whole tone is the mean of the major third. In general, a meantone is constructed in the same way as Pythagorean tuning, as a stack of fifths: the tone is reached after two fifths, the major third after four, so that as all fifths are the same, the tone is the mean of the third. In a meantone temperament, each fifth is narrowed ("tempered") by the same small amount. The most common of meantone temperaments is the quarter-comma meantone, in which each fifth is tempered by 1⁄4 of the syntonic comma, so that after four steps the major third (as C-G-D-A-E) is a full syntonic comma lower than the Pythagorean one. The extremes of the meantone systems encountered in historical practice are the Pythagorean tuning, where the whole tone corresponds to 9:8, i.e. (3:2)2/2, the mean of the major third (3:2)4/4, and the fifth (3:2) is not tempered; and the 1⁄3-comma meantone, where the fifth is tempered to the extent that three ascending fifths produce a pure minor third.(See Meantone temperaments). The music program Logic Pro uses also 1⁄2-comma meantone temperament.
- Equal-tempered refers to X-tone equal temperament with intervals corresponding to X divisions per octave.
- Tempered intervals however cannot be expressed in terms of prime limits and, unless exceptions, are not found in the table below.
- The table can also be sorted by frequency ratio, by cents, or alphabetically.
- Superparticular ratios are intervals that can be expressed as the ratio of two consecutive integers.
List
Column | Legend |
---|---|
TET | X-tone equal temperament (12-tet, etc.). |
Limit | 3-limit intonation, or Pythagorean. |
5-limit "just" intonation, or just. | |
7-limit intonation, or septimal. | |
11-limit intonation, or undecimal. | |
13-limit intonation, or tridecimal. | |
17-limit intonation, or septendecimal. | |
19-limit intonation, or novendecimal. | |
Higher limits. | |
M | Meantone temperament or tuning. |
S | Superparticular ratio (no separate color code). |
Cents | Note (from C) | Freq. ratio | Prime factors | Interval name | TET | Limit | M | S |
---|---|---|---|---|---|---|---|---|
0.00 | C[2] | 1 : 1 | 1 : 1 | play Unison,[3] monophony,[4] perfect prime,[3] tonic,[5] or fundamental | 1, 12 | 3 | M | |
0.03 | 65537 : 65536 | 65537 : 216 | play Sixty-five-thousand-five-hundred-thirty-seventh harmonic | 65537 | S | |||
0.40 | C♯− | 4375 : 4374 | 54×7 : 2×37 | play Ragisma[3][6] | 7 | S | ||
0.72 | E+ | 2401 : 2400 | 74 : 25×3×52 | play Breedsma[3][6] | 7 | S | ||
1.00 | 21/1200 | 21/1200 | play Cent[7] | 1200 | ||||
1.20 | 21/1000 | 21/1000 | play Millioctave | 1000 | ||||
1.95 | B♯++ | 32805 : 32768 | 38×5 : 215 | play Schisma[3][5] | 5 | |||
1.96 | 3:2÷(27/12) | 3 : 219/12 | Grad, Werckmeister[8] | |||||
3.99 | 101/1000 | 21/1000×51/1000 | play Savart or eptaméride | 301.03 | ||||
7.71 | B♯ | 225 : 224 | 32×52 : 25×7 | play Septimal kleisma,[3][6] marvel comma | 7 | S | ||
8.11 | B− | 15625 : 15552 | 56 : 26×35 | play Kleisma or semicomma majeur[3][6] | 5 | |||
10.06 | A++ | 2109375 : 2097152 | 33×57 : 221 | play Semicomma,[3][6] Fokker's comma[3] | 5 | |||
10.85 | C | 160 : 159 | 25×5 : 3×53 | play Difference between 5:3 & 53:32 | 53 | S | ||
11.98 | C | 145 : 144 | 5×29 : 24×32 | play Difference between 29:16 & 9:5 | 29 | S | ||
12.50 | 21/96 | 21/96 | play Sixteenth tone | 96 | ||||
13.07 | B− | 1728 : 1715 | 26×33 : 5×73 | play Orwell comma[3][9] | 7 | |||
13.47 | C | 129 : 128 | 3×43 : 27 | play Hundred-twenty-ninth harmonic | 43 | S | ||
13.79 | D | 126 : 125 | 2×32×7 : 53 | play Small septimal semicomma,[6] small septimal comma,[3] starling comma | 7 | S | ||
14.37 | C♭↑↑− | 121 : 120 | 112 : 23×3×5 | play Undecimal seconds comma[3] | 11 | S | ||
16.67 | C↑[lower-alpha 1] | 21/72 | 21/72 | play 1 step in 72 equal temperament | 72 | |||
18.13 | C | 96 : 95 | 25×3 : 5×19 | play Difference between 19:16 & 6:5 | 19 | S | ||
19.55 | D--[2] | 2048 : 2025 | 211 : 34×52 | play Diaschisma,[3][6] minor comma | 5 | |||
21.51 | C+[2] | 81 : 80 | 34 : 24×5 | play Syntonic comma,[3][5][6] major comma, komma, chromatic diesis, or comma of Didymus[3][6][10][11] | 5 | S | ||
22.64 | 21/53 | 21/53 | play Holdrian comma, Holder's comma, 1 step in 53 equal temperament | 53 | ||||
23.46 | B♯+++ | 531441 : 524288 | 312 : 219 | play Pythagorean comma,[3][5][6][10][11] ditonic comma[3][6] | 3 | |||
25.00 | 21/48 | 21/48 | play Eighth tone | 48 | ||||
26.84 | C | 65 : 64 | 5×13 : 26 | play Sixty-fifth harmonic,[5] 13th-partial chroma[3] | 13 | S | ||
27.26 | C− | 64 : 63 | 26 : 32×7 | play Septimal comma,[3][6][11] Archytas' comma,[3] 63rd subharmonic | 7 | S | ||
29.27 | 21/41 | 21/41 | play 1 step in 41 equal temperament | 41 | ||||
31.19 | D♭↓ | 56 : 55 | 23×7 : 5×11 | play Undecimal diesis,[3] Ptolemy's enharmonic:[5] difference between (11 : 8) and (7 : 5) tritone | 11 | S | ||
33.33 | C/D♭[lower-alpha 1] | 21/36 | 21/36 | play Sixth tone | 36, 72 | |||
34.28 | C | 51 : 50 | 3×17 : 2×52 | play Difference between 17:16 & 25:24 | 17 | S | ||
34.98 | B♯- | 50 : 49 | 2×52 : 72 | play Septimal sixth tone or jubilisma, Erlich's decatonic comma or tritonic diesis[3][6] | 7 | S | ||
35.70 | D♭ | 49 : 48 | 72 : 24×3 | play Septimal diesis, slendro diesis or septimal 1/6-tone[3] | 7 | S | ||
38.05 | C | 46 : 45 | 2×23 : 32×5 | play Inferior quarter tone,[5] difference between 23:16 & 45:32 | 23 | S | ||
38.71 | 21/31 | 21/31 | play 1 step in 31 equal temperament | 31 | ||||
38.91 | C↓♯+ | 45 : 44 | 32×5 : 4×11 | play Undecimal diesis or undecimal fifth tone | 11 | S | ||
40.00 | 21/30 | 21/30 | play Fifth tone | 30 | ||||
41.06 | D− | 128 : 125 | 27 : 53 | play Enharmonic diesis or 5-limit limma, minor diesis,[6] diminished second,[5][6] minor diesis or diesis,[3] 125th subharmonic | 5 | |||
41.72 | D♭ | 42 : 41 | 2×3×7 : 41 | play Lesser 41-limit fifth tone | 41 | S | ||
42.75 | C | 41 : 40 | 41 : 23×5 | play Greater 41-limit fifth tone | 41 | S | ||
43.83 | C♯ | 40 : 39 | 23×5 : 3×13 | play Tridecimal fifth tone | 13 | S | ||
44.97 | C | 39 : 38 | 3×13 : 2×19 | play Superior quarter-tone,[5] novendecimal fifth tone | 19 | S | ||
46.17 | D- | 38 : 37 | 2×19 : 37 | play Lesser 37-limit quarter tone | 37 | S | ||
47.43 | C♯ | 37 : 36 | 37 : 22×32 | play Greater 37-limit quarter tone | 37 | S | ||
48.77 | C | 36 : 35 | 22×32 : 5×7 | play Septimal quarter tone, septimal diesis,[3][6] septimal chroma,[2] superior quarter tone[5] | 7 | S | ||
49.98 | 246 : 239 | 3×41 : 239 | play Just quarter tone[11] | 239 | ||||
50.00 | C/D | 21/24 | 21/24 | play Equal-tempered quarter tone | 24 | |||
50.18 | D♭ | 35 : 34 | 5×7 : 2×17 | play ET quarter-tone approximation,[5] lesser 17-limit quarter tone | 17 | S | ||
50.72 | B♯++ | 59049 : 57344 | 310 : 213×7 | play Harrison's comma (10 P5s - 1 H7)[3] | 7 | |||
51.68 | C↓♯ | 34 : 33 | 2×17 : 3×11 | play Greater 17-limit quarter tone | 17 | S | ||
53.27 | C↑ | 33 : 32 | 3×11 : 25 | play Thirty-third harmonic,[5] undecimal comma, undecimal quarter tone | 11 | S | ||
54.96 | D♭- | 32 : 31 | 25 : 31 | play Inferior quarter-tone,[5] thirty-first subharmonic | 31 | S | ||
56.55 | B♯+ | 529 : 512 | 232 : 29 | play Five-hundred-twenty-ninth harmonic | 23 | |||
56.77 | C | 31 : 30 | 31 : 2×3×5 | play Greater quarter-tone,[5] difference between 31:16 & 15:8 | 31 | S | ||
58.69 | C♯ | 30 : 29 | 2×3×5 : 29 | play Lesser 29-limit quarter tone | 29 | S | ||
60.75 | C | 29 : 28 | 29 : 22×7 | play Greater 29-limit quarter tone | 29 | S | ||
62.96 | D♭- | 28 : 27 | 22×7 : 33 | play Septimal minor second, small minor second, inferior quarter tone[5] | 7 | S | ||
63.81 | (3 : 2)1/11 | 31/11 : 21/11 | play Beta scale step | 18.75 | ||||
65.34 | C♯+ | 27 : 26 | 33 : 2×13 | play Chromatic diesis,[12] tridecimal comma[3] | 13 | S | ||
66.34 | D♭ | 133 : 128 | 7×19 : 27 | play One-hundred-thirty-third harmonic | 19 | |||
66.67 | C↑/C♯[lower-alpha 1] | 21/18 | 21/18 | play Third tone | 18, 36, 72 | |||
67.90 | D- | 26 : 25 | 2×13 : 52 | play Tridecimal third tone, third tone[5] | 13 | S | ||
70.67 | C♯[2] | 25 : 24 | 52 : 23×3 | play Just chromatic semitone or minor chroma,[3] lesser chromatic semitone, small (just) semitone[11] or minor second,[4] minor chromatic semitone,[13] or minor semitone,[5] 2⁄7-comma meantone chromatic semitone, augmented unison | 5 | S | ||
73.68 | D♭- | 24 : 23 | 23×3 : 23 | play Lesser 23-limit semitone | 23 | S | ||
75.00 | 21/16 | 23/48 | play 1 step in 16 equal temperament, 3 steps in 48 | 16, 48 | ||||
76.96 | C↓♯+ | 23 : 22 | 23 : 2×11 | play Greater 23-limit semitone | 23 | S | ||
78.00 | (3 : 2)1/9 | 31/9 : 21/9 | play Alpha scale step | 15.39 | ||||
79.31 | 67 : 64 | 67 : 26 | play Sixty-seventh harmonic[5] | 67 | ||||
80.54 | C↑- | 22 : 21 | 2×11 : 3×7 | play Hard semitone,[5] two-fifth tone small semitone | 11 | S | ||
84.47 | D♭ | 21 : 20 | 3×7 : 22×5 | play Septimal chromatic semitone, minor semitone[3] | 7 | S | ||
88.80 | C♯ | 20 : 19 | 22×5 : 19 | play Novendecimal augmented unison | 19 | S | ||
90.22 | D♭−−[2] | 256 : 243 | 28 : 35 | play Pythagorean minor second or limma,[3][6][11] Pythagorean diatonic semitone, Low Semitone[14] | 3 | |||
92.18 | C♯+[2] | 135 : 128 | 33×5 : 27 | play Greater chromatic semitone, chromatic semitone, semitone medius, major chroma or major limma,[3] small limma,[11] major chromatic semitone,[13] limma ascendant[5] | 5 | |||
93.60 | D♭- | 19 : 18 | 19 : 2×9 | Novendecimal minor secondplay | 19 | S | ||
97.36 | D↓↓ | 128 : 121 | 27 : 112 | play 121st subharmonic,[5][6] undecimal minor second | 11 | |||
98.95 | D♭ | 18 : 17 | 2×32 : 17 | play Just minor semitone, Arabic lute index finger[3] | 17 | S | ||
100.00 | C♯/D♭ | 21/12 | 21/12 | play Equal-tempered minor second or semitone | 12 | M | ||
104.96 | C♯[2] | 17 : 16 | 17 : 24 | play Minor diatonic semitone, just major semitone, overtone semitone,[5] 17th harmonic,[3] limma | 17 | S | ||
111.45 | 25√5 | (5 : 1)1/25 | play Studie II interval (compound just major third, 5:1, divided into 25 equal parts) | 25 | ||||
111.73 | D♭-[2] | 16 : 15 | 24 : 3×5 | play Just minor second,[15] just diatonic semitone, large just semitone or major second,[4] major semitone,[5] limma, minor diatonic semitone,[3] diatonic second[16] semitone,[14] diatonic semitone,[11] 1⁄6-comma meantone minor second | 5 | S | ||
113.69 | C♯++ | 2187 : 2048 | 37 : 211 | play Apotome[3][11] or Pythagorean major semitone,[6] Pythagorean augmented unison, Pythagorean chromatic semitone, or Pythagorean apotome | 3 | |||
116.72 | (18 : 5)1/19 | 21/19×32/19 : 51/19 | play Secor | 10.28 | ||||
119.44 | C♯ | 15 : 14 | 3×5 : 2×7 | play Septimal diatonic semitone, major diatonic semitone,[3] Cowell semitone[5] | 7 | S | ||
125.00 | 25/48 | 25/48 | play 5 steps in 48 equal temperament | 48 | ||||
128.30 | D | 14 : 13 | 2×7 : 13 | play Lesser tridecimal 2/3-tone[17] | 13 | S | ||
130.23 | C♯+ | 69 : 64 | 3×23 : 26 | play Sixty-ninth harmonic[5] | 23 | |||
133.24 | D♭ | 27 : 25 | 33 : 52 | play Semitone maximus, minor second, large limma or Bohlen-Pierce small semitone,[3] high semitone,[14] alternate Renaissance half-step,[5] large limma, acute minor second | 5 | |||
133.33 | C♯/D♭[lower-alpha 1] | 21/9 | 22/18 | play Two-third tone | 9, 18, 36, 72 | |||
138.57 | D♭- | 13 : 12 | 13 : 22×3 | play Greater tridecimal 2/3-tone,[17] Three-quarter tone[5] | 13 | S | ||
150.00 | C/D | 23/24 | 21/8 | play Equal-tempered neutral second | 8, 24 | |||
150.64 | D↓[2] | 12 : 11 | 22×3 : 11 | play 3⁄4 tone or Undecimal neutral second,[3][5] trumpet three-quarter tone,[11] middle finger [between frets][14] | 11 | S | ||
155.14 | D | 35 : 32 | 5×7 : 25 | play Thirty-fifth harmonic[5] | 7 | |||
160.90 | D−− | 800 : 729 | 25×52 : 36 | play Grave whole tone,[3] neutral second, grave major second | 5 | |||
165.00 | D↑♭−[2] | 11 : 10 | 11 : 2×5 | play Greater undecimal minor/major/neutral second, 4/5-tone[6] or Ptolemy's second[3] | 11 | S | ||
171.43 | 21/7 | 21/7 | play 1 step in 7 equal temperament | 7 | ||||
175.00 | 27/48 | 27/48 | play 7 steps in 48 equal temperament | 48 | ||||
179.70 | 71 : 64 | 71 : 26 | play Seventy-first harmonic[5] | 71 | ||||
180.45 | E−−− | 65536 : 59049 | 216 : 310 | play Pythagorean diminished third,[3][6] Pythagorean minor tone | 3 | |||
182.40 | D-[2] | 10 : 9 | 2×5 : 32 | play Small just whole tone or major second,[4] minor whole tone,[3][5] lesser whole tone,[16] minor tone,[14] minor second,[11] half-comma meantone major second | 5 | S | ||
200.00 | D | 22/12 | 21/6 | play Equal-tempered major second | 6, 12 | M | ||
203.91 | D[2] | 9 : 8 | 32 : 23 | play Pythagorean major second, Large just whole tone or major second[11] (sesquioctavan),[4] tonus, major whole tone,[3][5] greater whole tone,[16] major tone[14] | 3 | S | ||
215.89 | D | 145 : 128 | 5×29 : 27 | play Hundred-forty-fifth harmonic | 29 | |||
223.46 | E−[2] | 256 : 225 | 28 : 32×52 | play Just diminished third,[16] 225th subharmonic | 5 | |||
225.00 | 23/16 | 29/48 | play 9 steps in 48 equal temperament | 16, 48 | ||||
227.79 | 73 : 64 | 73 : 26 | play Seventy-third harmonic[5] | 73 | ||||
231.17 | D−[2] | 8 : 7 | 23 : 7 | play Septimal major second,[4] septimal whole tone[3][5] | 7 | S | ||
240.00 | 21/5 | 21/5 | play 1 step in 5 equal temperament | 5 | ||||
247.74 | D♯ | 15 : 13 | 3×5 : 13 | play Tridecimal 5⁄4 tone[3] | 13 | |||
250.00 | D/E | 25/24 | 25/24 | play 5 steps in 24 equal temperament | 24 | |||
251.34 | D♯ | 37 : 32 | 37 : 25 | play Thirty-seventh harmonic[5] | 37 | |||
253.08 | D♯− | 125 : 108 | 53 : 22×33 | play Semi-augmented whole tone,[3] semi-augmented second | 5 | |||
262.37 | E↓♭ | 64 : 55 | 26 : 5×11 | play 55th subharmonic[5][6] | 11 | |||
268.80 | D | 299 : 256 | 13×23 : 28 | play Two-hundred-ninety-ninth harmonic | 23 | |||
266.87 | E♭[2] | 7 : 6 | 7 : 2×3 | play Septimal minor third[3][4][11] or Sub minor third[14] | 7 | S | ||
274.58 | D♯[2] | 75 : 64 | 3×52 : 26 | play Just augmented second,[16] Augmented tone,[14] augmented second[5][13] | 5 | |||
275.00 | 211/48 | 211/48 | play 11 steps in 48 equal temperament | 48 | ||||
289.21 | E↓♭ | 13 : 11 | 13 : 11 | play Tridecimal minor third[3] | 13 | |||
294.13 | E♭−[2] | 32 : 27 | 25 : 33 | play Pythagorean minor third[3][5][6][14][16] semiditone, or 27th subharmonic | 3 | |||
297.51 | E♭[2] | 19 : 16 | 19 : 24 | play 19th harmonic,[3] 19-limit minor third, overtone minor third[5] | 19 | |||
300.00 | D♯/E♭ | 23/12 | 21/4 | play Equal-tempered minor third | 4, 12 | M | ||
301.85 | D♯- | 25 : 21[5] | 52 : 3×7 | play Quasi-equal-tempered minor third, 2nd 7-limit minor third, Bohlen-Pierce second[3][6] | 7 | |||
310.26 | 6:5÷(81:80)1/4 | 22 : 53/4 | play Quarter-comma meantone minor third | M | ||||
311.98 | (3 : 2)4/9 | 34/9 : 24/9 | play Alpha scale minor third | 3.85 | ||||
315.64 | E♭[2] | 6 : 5 | 2×3 : 5 | play Just minor third,[3][4][5][11][16] minor third,[14] 1⁄3-comma meantone minor third | 5 | M | S | |
317.60 | D♯++ | 19683 : 16384 | 39 : 214 | play Pythagorean augmented second[3][6] | 3 | |||
320.14 | E♭↑ | 77 : 64 | 7×11 : 26 | play Seventy-seventh harmonic[5] | 11 | |||
325.00 | 213/48 | 213/48 | play 13 steps in 48 equal temperament | 48 | ||||
336.13 | D♯- | 17 : 14 | 17 : 2×7 | play Superminor third[18] | 17 | |||
337.15 | E♭+ | 243 : 200 | 35 : 23×52 | play Acute minor third[3] | 5 | |||
342.48 | E♭ | 39 : 32 | 3×13 : 25 | play Thirty-ninth harmonic[5] | 13 | |||
342.86 | 22/7 | 22/7 | play 2 steps in 7 equal temperament | 7 | ||||
342.91 | E♭- | 128 : 105 | 27 : 3×5×7 | play 105th subharmonic,[5] septimal neutral third[6] | 7 | |||
347.41 | E↑♭−[2] | 11 : 9 | 11 : 32 | play Undecimal neutral third[3][5] | 11 | |||
350.00 | D/E | 27/24 | 27/24 | play Equal-tempered neutral third | 24 | |||
354.55 | E↓+ | 27 : 22 | 33 : 2×11 | play Zalzal's wosta[6] 12:11 X 9:8[14] | 11 | |||
359.47 | E[2] | 16 : 13 | 24 : 13 | play Tridecimal neutral third[3] | 13 | |||
364.54 | 79 : 64 | 79 : 26 | play Seventy-ninth harmonic[5] | 79 | ||||
364.81 | E− | 100 : 81 | 22×52 : 34 | play Grave major third[3] | 5 | |||
375.00 | 25/16 | 215/48 | play 15 steps in 48 equal temperament | 16, 48 | ||||
384.36 | F♭−− | 8192 : 6561 | 213 : 38 | play Pythagorean diminished fourth,[3][6] Pythagorean 'schismatic' third[5] | 3 | |||
386.31 | E[2] | 5 : 4 | 5 : 22 | play Just major third,[3][4][5][11][16] major third,[14] quarter-comma meantone major third | 5 | M | S | |
397.10 | E+ | 161 : 128 | 7×23 : 27 | play One-hundred-sixty-first harmonic | 23 | |||
400.00 | E | 24/12 | 21/3 | play Equal-tempered major third | 3, 12 | M | ||
402.47 | E | 323 : 256 | 17×19 : 28 | play Three-hundred-twenty-third harmonic | 19 | |||
407.82 | E+[2] | 81 : 64 | 34 : 26 | play Pythagorean major third,[3][5][6][14][16] ditone | 3 | |||
417.51 | F↓+[2] | 14 : 11 | 2×7 : 11 | play Undecimal diminished fourth or major third[3] | 11 | |||
425.00 | 217/48 | 217/48 | play 17 steps in 48 equal temperament | 48 | ||||
427.37 | F♭[2] | 32 : 25 | 25 : 52 | play Just diminished fourth,[16] diminished fourth,[5][13] 25th subharmonic | 5 | |||
429.06 | E | 41 : 32 | 41 : 25 | play Forty-first harmonic[5] | 41 | |||
435.08 | E[2] | 9 : 7 | 32 : 7 | play Septimal major third,[3][5] Bohlen-Pierce third,[3] Super major Third[14] | 7 | |||
444.77 | F↓ | 128 : 99 | 27 : 9×11 | play 99th subharmonic[5][6] | 11 | |||
450.00 | E/F | 29/24 | 29/24 | play 9 steps in 24 equal temperament | 24 | |||
450.05 | 83 : 64 | 83 : 26 | play Eighty-third harmonic[5] | 83 | ||||
454.21 | F♭ | 13 : 10 | 13 : 2×5 | play Tridecimal major third or diminished fourth | 13 | |||
456.99 | E♯[2] | 125 : 96 | 53 : 25×3 | play Just augmented third, augmented third[5] | 5 | |||
462.35 | E- | 64 : 49 | 26 : 72 | play 49th subharmonic[5][6] | 7 | |||
470.78 | F+[2] | 21 : 16 | 3×7 : 24 | play Twenty-first harmonic, narrow fourth,[3] septimal fourth,[5] wide augmented third, H7 on G | 7 | |||
475.00 | 219/48 | 219/48 | play 19 steps in 48 equal temperament | 48 | ||||
478.49 | E♯+ | 675 : 512 | 33×52 : 29 | play Six-hundred-seventy-fifth harmonic, wide augmented third[3] | 5 | |||
480.00 | 22/5 | 22/5 | play 2 steps in 5 equal temperament | 5 | ||||
491.27 | E♯ | 85 : 64 | 5×17 : 26 | play Eighty-fifth harmonic[5] | 17 | |||
498.04 | F[2] | 4 : 3 | 22 : 3 | play Perfect fourth,[3][5][16] Pythagorean perfect fourth, Just perfect fourth or diatessaron[4] | 3 | S | ||
500.00 | F | 25/12 | 25/12 | play Equal-tempered perfect fourth | 12 | M | ||
501.42 | F+ | 171 : 128 | 32×19 : 27 | play One-hundred-seventy-first harmonic | 19 | |||
510.51 | (3 : 2)8/11 | 38/11 : 28/11 | play Beta scale perfect fourth | 18.75 | ||||
511.52 | F | 43 : 32 | 43 : 25 | play Forty-third harmonic[5] | 43 | |||
514.29 | 23/7 | 23/7 | play 3 steps in 7 equal temperament | 7 | ||||
519.55 | F+[2] | 27 : 20 | 33 : 22×5 | play 5-limit wolf fourth, acute fourth,[3] imperfect fourth[16] | 5 | |||
521.51 | E♯+++ | 177147 : 131072 | 311 : 217 | play Pythagorean augmented third[3][6] (F+ (pitch)) | 3 | |||
525.00 | 27/16 | 221/48 | play 21 steps in 48 equal temperament | 16, 48 | ||||
531.53 | F+ | 87 : 64 | 3×29 : 26 | play Eighty-seventh harmonic[5] | 29 | |||
536.95 | F↓♯+ | 15 : 11 | 3×5 : 11 | play Undecimal augmented fourth[3] | 11 | |||
550.00 | F/G | 211/24 | 211/24 | play 11 steps in 24 equal temperament | 24 | |||
551.32 | F↑[2] | 11 : 8 | 11 : 23 | play eleventh harmonic,[5] undecimal tritone,[5] lesser undecimal tritone, undecimal semi-augmented fourth[3] | 11 | |||
563.38 | F♯+ | 18 : 13 | 2×9 : 13 | play Tridecimal augmented fourth[3] | 13 | |||
568.72 | F♯[2] | 25 : 18 | 52 : 2×32 | play Just augmented fourth[3][5] | 5 | |||
570.88 | 89 : 64 | 89 : 26 | play Eighty-ninth harmonic[5] | 89 | ||||
575.00 | 223/48 | 223/48 | play 23 steps in 48 equal temperament | 48 | ||||
582.51 | G♭[2] | 7 : 5 | 7 : 5 | play Lesser septimal tritone, septimal tritone[3][4][5] Huygens' tritone or Bohlen-Pierce fourth,[3] septimal fifth,[11] septimal diminished fifth[19] | 7 | |||
588.27 | G♭−− | 1024 : 729 | 210 : 36 | play Pythagorean diminished fifth,[3][6] low Pythagorean tritone[5] | 3 | |||
590.22 | F♯+[2] | 45 : 32 | 32×5 : 25 | play Just augmented fourth, just tritone,[4][11] tritone,[6] diatonic tritone,[3] 'augmented' or 'false' fourth,[16] high 5-limit tritone,[5] 1⁄6-comma meantone augmented fourth | 5 | |||
595.03 | G♭ | 361 : 256 | 192 : 28 | play Three-hundred-sixty-first harmonic | 19 | |||
600.00 | F♯/G♭ | 26/12 | 21/2=√2 | play Equal-tempered tritone | 2, 12 | M | ||
609.35 | G♭ | 91 : 64 | 7×13 : 26 | play Ninety-first harmonic[5] | 13 | |||
609.78 | G♭−[2] | 64 : 45 | 26 : 32×5 | play Just tritone,[4] 2nd tritone,[6] 'false' fifth,[16] diminished fifth,[13] low 5-limit tritone,[5] 45th subharmonic | 5 | |||
611.73 | F♯++ | 729 : 512 | 36 : 29 | play Pythagorean tritone,[3][6] Pythagorean augmented fourth, high Pythagorean tritone[5] | 3 | |||
617.49 | F♯[2] | 10 : 7 | 2×5 : 7 | play Greater septimal tritone, septimal tritone,[4][5] Euler's tritone[3] | 7 | |||
625.00 | 225/48 | 225/48 | play 25 steps in 48 equal temperament | 48 | ||||
628.27 | F♯+ | 23 : 16 | 23 : 24 | play Twenty-third harmonic,[5] classic diminished fifth | 23 | |||
631.28 | G♭[2] | 36 : 25 | 22×32 : 52 | play Just diminished fifth[5] | 5 | |||
646.99 | F♯+ | 93 : 64 | 3×31 : 26 | play Ninety-third harmonic[5] | 31 | |||
648.68 | G↓[2] | 16 : 11 | 24 : 11 | play ` undecimal semi-diminished fifth[3] | 11 | |||
650.00 | F/G | 213/24 | 213/24 | play 13 steps in 24 equal temperament | 24 | |||
665.51 | G | 47 : 32 | 47 : 25 | play Forty-seventh harmonic[5] | 47 | |||
675.00 | 29/16 | 227/48 | play 27 steps in 48 equal temperament | 16, 48 | ||||
678.49 | A−−− | 262144 : 177147 | 218 : 311 | play Pythagorean diminished sixth[3][6] | 3 | |||
680.45 | G− | 40 : 27 | 23×5 : 33 | play 5-limit wolf fifth,[5] or diminished sixth, grave fifth,[3][6][11] imperfect fifth,[16] | 5 | |||
683.83 | G | 95 : 64 | 5×19 : 26 | play Ninety-fifth harmonic[5] | 19 | |||
684.82 | E++ | 12167 : 8192 | 233 : 213 | play 12167th harmonic | 23 | |||
685.71 | 24/7 : 1 | play 4 steps in 7 equal temperament | ||||||
691.20 | 3:2÷(81:80)1/2 | 2×51/2 : 3 | play Half-comma meantone perfect fifth | M | ||||
694.79 | 3:2÷(81:80)1/3 | 21/3×51/3 : 31/3 | play 1⁄3-comma meantone perfect fifth | M | ||||
695.81 | 3:2÷(81:80)2/7 | 21/7×52/7 : 31/7 | play 2⁄7-comma meantone perfect fifth | M | ||||
696.58 | 3:2÷(81:80)1/4 | 51/4 | play Quarter-comma meantone perfect fifth | M | ||||
697.65 | 3:2÷(81:80)1/5 | 31/5×51/5 : 21/5 | play 1⁄5-comma meantone perfect fifth | M | ||||
698.37 | 3:2÷(81:80)1/6 | 31/3×51/6 : 21/3 | play 1⁄6-comma meantone perfect fifth | M | ||||
700.00 | G | 27/12 | 27/12 | play Equal-tempered perfect fifth | 12 | M | ||
701.89 | 231/53 | 231/53 | play 53-TET perfect fifth | 53 | ||||
701.96 | G[2] | 3 : 2 | 3 : 2 | play Perfect fifth,[3][5][16] Pythagorean perfect fifth, Just perfect fifth or diapente,[4] fifth,[14] Just fifth[11] | 3 | S | ||
702.44 | 224/41 | 224/41 | play 41-TET perfect fifth | 41 | ||||
703.45 | 217/29 | 217/29 | play 29-TET perfect fifth | 29 | ||||
719.90 | 97 : 64 | 97 : 26 | play Ninety-seventh harmonic[5] | 97 | ||||
720.00 | 23/5 : 1 | play 3 steps in 5 equal temperament | 5 | |||||
721.51 | A− | 1024 : 675 | 210 : 33×52 | play Narrow diminished sixth[3] | 5 | |||
725.00 | 229/48 | 229/48 | play 29 steps in 48 equal temperament | 48 | ||||
729.22 | G- | 32 : 21 | 24 : 3×7 | play 21st subharmonic,[5][6] septimal diminished sixth | 7 | |||
733.23 | F+ | 391 : 256 | 17×23 : 28 | play Three-hundred-ninety-first harmonic | 23 | |||
737.65 | A♭+ | 49 : 32 | 7×7 : 25 | play Forty-ninth harmonic[5] | 7 | |||
743.01 | A | 192 : 125 | 26×3 : 53 | play Classic diminished sixth[3] | 5 | |||
750.00 | G/A | 215/24 | 215/24 | play 15 steps in 24 equal temperament | 24 | |||
755.23 | G↑ | 99 : 64 | 32×11 : 26 | play Ninety-ninth harmonic[5] | 11 | |||
764.92 | A♭[2] | 14 : 9 | 2×7 : 32 | play Septimal minor sixth[3][5] | 7 | |||
772.63 | G♯ | 25 : 16 | 52 : 24 | play Just augmented fifth[5][16] | ||||
775.00 | 231/48 | 231/48 | play 31 steps in 48 equal temperament | 48 | ||||
781.79 | π : 2 | play Wallis product | ||||||
782.49 | G↑-[2] | 11 : 7 | 11 : 7 | play Undecimal minor sixth,[5] undecimal augmented fifth,[3] Fibonacci numbers | 11 | |||
789.85 | 101 : 64 | 101 : 26 | play Hundred-first harmonic[5] | 101 | ||||
792.18 | A♭−[2] | 128 : 81 | 27 : 34 | play Pythagorean minor sixth,[3][5][6] 81st subharmonic | 3 | |||
798.40 | A♭+ | 203 : 128 | 7×29 : 27 | play Two-hundred-third harmonic | 29 | |||
800.00 | G♯/A♭ | 28/12 | 22/3 | play Equal-tempered minor sixth | 3, 12 | M | ||
806.91 | G♯ | 51 : 32 | 3×17 : 25 | play Fifty-first harmonic[5] | 17 | |||
813.69 | A♭[2] | 8 : 5 | 23 : 5 | play Just minor sixth[3][4][11][16] | 5 | |||
815.64 | G♯++ | 6561 : 4096 | 38 : 212 | play Pythagorean augmented fifth,[3][6] Pythagorean 'schismatic' sixth[5] | 3 | |||
823.80 | 103 : 64 | 103 : 26 | play Hundred-third harmonic[5] | 103 | ||||
825.00 | 211/16 | 233/48 | play 33 steps in 48 equal temperament | 16, 48 | ||||
832.18 | G♯+ | 207 : 128 | 32×23 : 27 | play Two-hundred-seventh harmonic | 23 | |||
833.09 | 51/2+1 : 2 | φ : 1 | play Golden ratio (833 cents scale) | |||||
833.11 | 233 : 144 | 233 : 24×32 | play Golden ratio approximation (833 cents scale) | 233 | ||||
835.19 | A♭+ | 81 : 50 | 34 : 2×52 | play Acute minor sixth[3] | 5 | |||
840.53 | A♭[2] | 13 : 8 | 13 : 23 | play Tridecimal neutral sixth,[3] overtone sixth,[5] thirteenth harmonic | 13 | |||
848.83 | A♭↑ | 209 : 128 | 11×19 : 27 | play Two-hundred-ninth harmonic | 19 | |||
850.00 | G/A | 217/24 | 217/24 | play Equal-tempered neutral sixth | 24 | |||
852.59 | A↓+[2] | 18 : 11 | 2×32 : 11 | play Undecimal neutral sixth,[3][5] Zalzal's neutral sixth | 11 | |||
857.09 | A+ | 105 : 64 | 3×5×7 : 26 | play Hundred-fifth harmonic[5] | 7 | |||
857.14 | 25/7 | 25/7 | play 5 steps in 7 equal temperament | 7 | ||||
862.85 | A− | 400 : 243 | 24×52 : 35 | play Grave major sixth[3] | 5 | |||
873.50 | A | 53 : 32 | 53 : 25 | play Fifty-third harmonic[5] | 53 | |||
875.00 | 235/48 | 235/48 | play 35 steps in 48 equal temperament | 48 | ||||
879.86 | A↓ | 128 : 77 | 27 : 7×11 | play 77th subharmonic[5][6] | 11 | |||
882.40 | B−−− | 32768 : 19683 | 215 : 39 | play Pythagorean diminished seventh[3][6] | 3 | |||
884.36 | A[2] | 5 : 3 | 5 : 3 | play Just major sixth,[3][4][5][11][16] Bohlen-Pierce sixth,[3] 1⁄3-comma meantone major sixth | 5 | M | ||
889.76 | 107 : 64 | 107 : 26 | play Hundred-seventh harmonic[5] | 107 | ||||
892.54 | B | 6859 : 4096 | 193 : 212 | play 6859th harmonic | 19 | |||
900.00 | A | 29/12 | 23/4 | play Equal-tempered major sixth | 4, 12 | M | ||
902.49 | A | 32 : 19 | 25 : 19 | play 19th subharmonic[5][6] | 19 | |||
905.87 | A+[2] | 27 : 16 | 33 : 24 | play Pythagorean major sixth[3][5][11][16] | 3 | |||
921.82 | 109 : 64 | 109 : 26 | play Hundred-ninth harmonic[5] | 109 | ||||
925.00 | 237/48 | 237/48 | play 37 steps in 48 equal temperament | 48 | ||||
925.42 | B−[2] | 128 : 75 | 27 : 3×52 | play Just diminished seventh,[16] diminished seventh,[5][13] 75th subharmonic | 5 | |||
925.79 | A+ | 437 : 256 | 19×23 : 28 | play Four-hundred-thirty-seventh harmonic | 23 | |||
933.13 | A[2] | 12 : 7 | 22×3 : 7 | play Septimal major sixth[3][4][5] | 7 | |||
937.63 | A↑ | 55 : 32 | 5×11 : 25 | play Fifty-fifth harmonic[5][20] | 11 | |||
950.00 | A/B | 219/24 | 219/24 | play 19 steps in 24 equal temperament | 24 | |||
953.30 | A♯+ | 111 : 64 | 3×37 : 26 | play Hundred-eleventh harmonic[5] | 37 | |||
955.03 | A♯[2] | 125 : 72 | 53 : 23×32 | play Just augmented sixth[5] | 5 | |||
957.21 | (3 : 2)15/11 | 315/11 : 215/11 | play 15 steps in Beta scale | 18.75 | ||||
960.00 | 24/5 | 24/5 | play 4 steps in 5 equal temperament | 5 | ||||
968.83 | B♭[2] | 7 : 4 | 7 : 22 | play Septimal minor seventh,[4][5][11] harmonic seventh,[3][11] augmented sixth | 7 | |||
975.00 | 213/16 | 239/48 | play 39 steps in 48 equal temperament | 16, 48 | ||||
976.54 | A♯+[2] | 225 : 128 | 32×52 : 27 | play Just augmented sixth[16] | 5 | |||
984.21 | 113 : 64 | 113 : 26 | play Hundred-thirteenth harmonic[5] | 113 | ||||
996.09 | B♭−[2] | 16 : 9 | 24 : 32 | play Pythagorean minor seventh,[3] Small just minor seventh,[4] lesser minor seventh,[16] just minor seventh,[11] Pythagorean small minor seventh[5] | 3 | |||
999.47 | B♭ | 57 : 32 | 3×19 : 25 | play Fifty-seventh harmonic[5] | 19 | |||
1000.00 | A♯/B♭ | 210/12 | 25/6 | play Equal-tempered minor seventh | 6, 12 | M | ||
1014.59 | A♯+ | 115 : 64 | 5×23 : 26 | play Hundred-fifteenth harmonic[5] | 23 | |||
1017.60 | B♭[2] | 9 : 5 | 32 : 5 | play Greater just minor seventh,[16] large just minor seventh,[4][5] Bohlen-Pierce seventh[3] | 5 | |||
1019.55 | A♯+++ | 59049 : 32768 | 310 : 215 | play Pythagorean augmented sixth[3][6] | 3 | |||
1025.00 | 241/48 | 241/48 | play 41 steps in 48 equal temperament | 48 | ||||
1028.57 | 26/7 | 26/7 | play 6 steps in 7 equal temperament | 7 | ||||
1029.58 | B♭ | 29 : 16 | 29 : 24 | play Twenty-ninth harmonic,[5] minor seventh | 29 | |||
1035.00 | B↓[2] | 20 : 11 | 22×5 : 11 | play Lesser undecimal neutral seventh, large minor seventh[3] | 11 | |||
1039.10 | B♭+ | 729 : 400 | 36 : 24×52 | play Acute minor seventh[3] | 5 | |||
1044.44 | B♭ | 117 : 64 | 32×13 : 26 | play Hundred-seventeenth harmonic[5] | 13 | |||
1044.86 | B♭- | 64 : 35 | 26 : 5×7 | play 35th subharmonic,[5] septimal neutral seventh[6] | 7 | |||
1049.36 | B↑♭−[2] | 11 : 6 | 11 : 2×3 | play 21⁄4-tone or Undecimal neutral seventh,[3] undecimal 'median' seventh[5] | 11 | |||
1050.00 | A/B | 221/24 | 27/8 | play Equal-tempered neutral seventh | 8, 24 | |||
1059.17 | 59 : 32 | 59 : 25 | play Fifty-ninth harmonic[5] | 59 | ||||
1066.76 | B− | 50 : 27 | 2×52 : 33 | play Grave major seventh[3] | 5 | |||
1071.70 | B♭- | 13 : 7 | 13 : 7 | play Tridecimal neutral seventh[21] | 13 | |||
1073.78 | B | 119 : 64 | 7×17 : 26 | play Hundred-nineteenth harmonic[5] | 17 | |||
1075.00 | 243/48 | 243/48 | play 43 steps in 48 equal temperament | 48 | ||||
1086.31 | C′♭−− | 4096 : 2187 | 212 : 37 | play Pythagorean diminished octave[3][6] | 3 | |||
1088.27 | B[2] | 15 : 8 | 3×5 : 23 | play Just major seventh,[3][5][11][16] small just major seventh,[4] 1⁄6-comma meantone major seventh | 5 | |||
1095.04 | C♭ | 32 : 17 | 25 : 17 | play 17th subharmonic[5][6] | 17 | |||
1100.00 | B | 211/12 | 211/12 | play Equal-tempered major seventh | 12 | M | ||
1102.64 | B↑↑♭- | 121 : 64 | 112 : 26 | play Hundred-twenty-first harmonic[5] | 11 | |||
1107.82 | C′♭− | 256 : 135 | 28 : 33×5 | play Octave − major chroma,[3] 135th subharmonic, narrow diminished octave | 5 | |||
1109.78 | B+[2] | 243 : 128 | 35 : 27 | play Pythagorean major seventh[3][5][6][11] | 3 | |||
1116.88 | 61 : 32 | 61 : 25 | play Sixty-first harmonic[5] | 61 | ||||
1125.00 | 215/16 | 245/48 | play 45 steps in 48 equal temperament | 16, 48 | ||||
1129.33 | C′♭[2] | 48 : 25 | 24×3 : 52 | play Classic diminished octave,[3][6] large just major seventh[4] | 5 | |||
1131.02 | B | 123 : 64 | 3×41 : 26 | play Hundred-twenty-third harmonic[5] | 41 | |||
1137.04 | B | 27 : 14 | 33 : 2×7 | play Septimal major seventh[5] | 7 | |||
1138.04 | C♭ | 247 : 128 | 13×19 : 27 | play Two-hundred-forty-seventh harmonic | 19 | |||
1145.04 | B | 31 : 16 | 31 : 24 | play Thirty-first harmonic,[5] augmented seventh | 31 | |||
1146.73 | C↓ | 64 : 33 | 26 : 3×11 | play 33rd subharmonic[6] | 11 | |||
1150.00 | B/C | 223/24 | 223/24 | play 23 steps in 24 equal temperament | 24 | |||
1151.23 | C | 35 : 18 | 5×7 : 2×32 | play Septimal supermajor seventh, septimal quarter tone inverted | 7 | |||
1158.94 | B♯[2] | 125 : 64 | 53 : 26 | play Just augmented seventh,[5] 125th harmonic | 5 | |||
1172.74 | C+ | 63 : 32 | 32×7 : 25 | play Sixty-third harmonic[5] | 7 | |||
1175.00 | 247/48 | 247/48 | play 47 steps in 48 equal temperament | 48 | ||||
1178.49 | C′− | 160 : 81 | 25×5 : 34 | play Octave − syntonic comma,[3] semi-diminished octave | 5 | |||
1179.59 | B↑ | 253 : 128 | 11×23 : 27 | play Two-hundred-fifty-third harmonic[5] | 23 | |||
1186.42 | 127 : 64 | 127 : 26 | play Hundred-twenty-seventh harmonic[5] | 127 | ||||
1200.00 | C′ | 2 : 1 | 2 : 1 | play Octave[3][11] or diapason[4] | 1, 12 | 3 | M | S |
1223.46 | B♯+++ | 531441 : 524288 | 312 : 218 | play Pythagorean augmented seventh[3][6] | 3 | |||
1525.86 | 21/2+1 | play Silver ratio | ||||||
1901.96 | G′ | 3 : 1 | 3 : 1 | play Tritave or just perfect twelfth | 3 | |||
2400.00 | C″ | 4 : 1 | 22 : 1 | play Fifteenth or two octaves | 1, 12 | 3 | M | |
3986.31 | E‴ | 10 : 1 | 5×2 : 1 | play Decade, compound just major third | 5 | M |
Notes
- Maneri-Sims notation
References
- Fox, Christopher (2003). "Microtones and Microtonalities", Contemporary Music Review, v. 22, pt. 1-2. (Abingdon, Oxfordshire, UK: Routledge): p.13.
- Fonville, John. 1991. "Ben Johnston's Extended Just Intonation: A Guide for Interpreters". Perspectives of New Music 29, no. 2 (Summer): 106–37.
- "List of intervals", Huygens-Fokker Foundation. The Foundation uses "classic" to indicate "just" or leaves off any adjective, as in "major sixth".
- Partch, Harry (1979). Genesis of a Music, p.68-69. ISBN 978-0-306-80106-8.
- "Anatomy of an Octave", KyleGann.com. Gann leaves off "just" but includes "5-limit". He uses "median" for "neutral".
- Haluška, Ján (2003). The Mathematical Theory of Tone Systems, p.xxv-xxix. ISBN 978-0-8247-4714-5.
- Ellis, Alexander J.; Hipkins, Alfred J. (1884), "Tonometrical Observations on Some Existing Non-Harmonic Musical Scales", Proceedings of the Royal Society of London, 37 (232–234): 368–385, doi:10.1098/rspl.1884.0041, JSTOR 114325, S2CID 122407786.
- "Logarithmic Interval Measures", Huygens-Fokker.org. Accessed 2015-06-06.
- "Orwell Temperaments", Xenharmony.org.
- Partch (1979), p.70.
- Alexander John Ellis (1885). On the musical scales of various nations, p.488. s.n.
- William Smythe Babcock Mathews (1895). Pronouncing dictionary and condensed encyclopedia of musical terms, p.13. ISBN 1-112-44188-3.
- Anger, Joseph Humfrey (1912). A treatise on harmony, with exercises, Volume 3, p.xiv-xv. W. Tyrrell.
- Hermann Ludwig F. von Helmholtz (Alexander John Ellis, trans.) (1875). "Additions by the translator", On the sensations of tone as a physiological basis for the theory of music, p.644. No ISBN specified.
- A. R. Meuss (2004). Intervals, Scales, Tones and the Concert Pitch C. Temple Lodge Publishing. p. 15. ISBN 1902636465.
- Paul, Oscar (1885). A manual of harmony for use in music-schools and seminaries and for self-instruction, p.165. Theodore Baker, trans. G. Schirmer. Paul uses "natural" for "just".
- "13th-harmonic", 31et.com.
- Brabner, John H. F. (1884). The National Encyclopaedia, Vol.13, p.182. London. [ISBN unspecified]
- Sabat, Marc and von Schweinitz, Wolfgang (2004). "The Extended Helmholtz-Ellis JI Pitch Notation" [PDF], NewMusicBox.org. Accessed: 04:12, 15 March 2014 (UTC).
- Hermann L. F Von Helmholtz (2007). On the Sensations of Tone, p.456. ISBN 978-1-60206-639-7.
- "Gallery of Just Intervals", Xenharmonic.wikispaces.com.
External links
- "Names of seven-limit commas", XenHarmony.org. (Archived copy)
- "Anatomy of an Octave", KyleGann.com.
- "List of Overtones", Xenharmonic.Wikispaces.com.
- "All Known Musical Intervals" (by Dale Pond), Svpvril.com.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.