Neopentyl glycol

Neopentyl glycol (IUPAC name: 2,2-dimethylpropane-1,3-diol) is an organic chemical compound. It is used in the synthesis of polyesters, paints, lubricants, and plasticizers. When used in the manufacture of polyesters, it enhances the stability of the product towards heat, light, and water. By esterification reaction with fatty or carboxylic acids, synthetic lubricating esters with reduced potential for oxidation or hydrolysis, compared to natural esters, can be produced.

Neopentyl glycol[1]
Names
Preferred IUPAC name
2,2-Dimethylpropane-1,3-diol
Other names
2,2-Dimethyl-1,3-propanediol
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.004.347
UNII
Properties
C5H12O2
Molar mass 104.148 g/mol
Melting point 129.13 °C (264.43 °F; 402.28 K)
Boiling point 208 °C (406 °F; 481 K)
good
Solubility soluble in benzene, chloroform, very soluble in ethanol, diethyl ether
Thermochemistry
-551.2 kJ•mol−1
Hazards
Flash point 129 °C (264 °F; 402 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N verify (what is YN ?)
Infobox references

Reactions

Neopentyl glycol is synthesized industrially by the aldol reaction of formaldehyde and isobutyraldehyde. This creates the intermediate hydroxypivaldehyde, which can be converted to neopentyl glycol with either excess formaldehyde or by palladium on carbon hydrogenation. [2]

It is used as a protecting group for ketones, for example in gestodene synthesis.

A condensation reaction of neopentyl glycol with 2,6-di-tert-butylphenol gives CGP-7930.

Organoboronic acid esters of neopentyl glycol are useful in the Suzuki reaction[3]

Research

It has been reported that plastic crystals of neopentyl glycol exhibit a colossal barocaloric effect (CBCEs), which is a cooling effect caused by pressure-induced phase transitions. The obtained entropy changes are about 389 joules per kilogram per kelvin near room temperature. This CBCE phenomenon is likely to be very useful in future solid-state refrigeration technologies.[4]

References

  1. Lide, David R. (1998), Handbook of Chemistry and Physics (87 ed.), Boca Raton, Florida: CRC Press, pp. 3‑228, 5‑42, 16‑22, ISBN 0-8493-0594-2
  2. Weissermel, Klaus; Arpe, Hans-Jürgen; Lindley, Charlet R. (2003), Industrial Organic Chemistry (4 ed.), Wiley-VCH, pp. 214–215, ISBN 978-3-527-30578-0, retrieved 2009-07-20
  3. Blair, D. J.; Zhong, S.; Hesse, M. J.; Zabaleta, N.; Myers, E. L.; Aggarwal, V. K. (2016). "Full chirality transfer in the synthesis of hindered tertiary boronic esters under in situ lithiation–borylation conditions". Chemical Communications. 52 (30): 5289–5292. doi:10.1039/C6CC00536E. ISSN 1359-7345.
  4. Li, Bing; et al. (27 March 2019), Nature, pp. 506–510
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.