Sphingomonadaceae

Sphingomonadaceae are a gram-negative bacterial family of the Alphaproteobacteria. An important feature is the presence of sphingolipids (mainly 2′hydroxymyristol dihydrosphingosine 1-glucuronic acid, "SGL-1") in the outer membrane of the cell wall.[2][3] The cells are ovoid or rod-shaped. Others are also pleomorphic, i.e. the cells change the shape over time. Some species from Sphingomonadaceae family are dominant components of biofilms.[4][5][6]

Sphingomonadaceae
A culture of Sphingomonas phyllosphaerae
Scientific classification
Domain: Bacteria
Phylum: Proteobacteria
Class: Alphaproteobacteria
Order: Sphingomonadales
Family: Sphingomonadaceae
Kosako et al. 2000
Genera[1]

Subdivision

There are eighteen genera in Sphingomonadaceae: Aestuariisphingobium, Allosphingosinicella, Aquisediminimonas, Blastomonas, Chakrabartia, Hephaestia, Novosphingopyxis, Parablastomonas, Parasphingopyxis, Rhizorhabdus, Rhizorhapis, Sphingobium, Sphingomicrobium, Sphingomonas, Sphingopyxis, Sphingorhabdus, Sphingosinithalassobacter, and Stakelama.[7]

Energy source

While most species within Sphingomonadaceae family are heterotrophic,[8] some are phototrophic.

Function

Some species of Sphingomonadaceae are known to degrade some aromatic compounds. This makes the bacteria of interest to environmental remediation.[9]

The diverse metabolic capacity of genera within the Sphingomonadaceae family, such as Sphingobium, Novosphingobium, and Sphingopyxis enable these genera to adapt to and be abundant in the presence of Bisphenol A. A microbial community with abundant Sphingomonadaceae members can degrade Bisphenol A with a constant rate.[10]

Sphingomonas genus of Sphingomonadaceae are able to produce sphingans, a kind of exopolysaccharides with certain viscosity. This property of sphingans makes it useful in many industries including food and pharmaceutical.[11][8]

The Zymomonas genus in Sphingomonadaceae family are facultative anaerobic, ethanologenic and fermentative.[12] Zymomonas mobilis were found to be more efficient in digesting glucose and producing ethanol compared with Saccharomyces cerevisiae,[13] a yeast species that is used in fermentation and food industries.[14] While its characteristics such as high ethanol fermenting rate, high ethanol tolerance and broad pH tolerance make Zymomonas a fermentative agent in some industries,[15][12] it can also cause spoilage in beer and cider.[15] The production of Hydrogen sulfide and Acetaldehyde from Zymomonas increase turbidity and can produce an unappetizing odor in beer.[15][16]

Distribution

Bacteria within Sphingomonadaceae family are distributed in various environments, such as water,[5] soil,[17][18] sediment.[8][19]

Interaction with human and plants

Some members of Sphingomonadaceae family commonly exist in human-impacted environments, including drinking water systems,[20][5] hospital and household tap water,[21] and medical devices.[22][23][24]

Most of the species from Sphingomonadaceae family are not known to be harmful to humans or plants.[8] Some species can protect plants from disease-causing pathogens such as Thielaviopsis basicola, and Rhizoctonia solani AG2-2IIIB.[8][18][17][25]

The Sphingomonas and Sphingobium genera tend to have higher antibiotic resistance compared with three other genera within Sphingomonadaceae family: Novosphingobium, Sphingopyxis, and Blastomonas.[5] 

References

  1. "Sphingomonadaceae". NCBI taxonomy. Bethesda, MD: National Center for Biotechnology Information. Retrieved 13 May 2019.
  2. Garrity GM, Brenner DJ, Krieg NR, Staley JR, eds. (2005). Bergey's Manual of Systematic Bacteriology. Two The Proteobacteria, Part C: The Alpha-, Beta-, Delta-, and Epsilonproteobacteria. New York, New York: Springer. ISBN 978-0-387-24145-6.
  3. Ikushiro H, Islam MM, Tojo H, Hayashi H (August 2007). "Molecular characterization of membrane-associated soluble serine palmitoyltransferases from Sphingobacterium multivorum and Bdellovibrio stolpii". Journal of Bacteriology. 189 (15): 5749–61. doi:10.1128/JB.00194-07. PMC 1951810. PMID 17557831.
  4. de Vries HJ, Beyer F, Jarzembowska M, Lipińska J, van den Brink P, Zwijnenburg A, et al. (2019-01-25). "Sphingomonadaceae from fouled membranes". NPJ Biofilms and Microbiomes. 5 (1): 6. doi:10.1038/s41522-018-0074-1. PMC 6347639. PMID 30701078.
  5. Vaz-Moreira I, Nunes OC, Manaia CM (August 2011). "Diversity and antibiotic resistance patterns of Sphingomonadaceae isolates from drinking water". Applied and Environmental Microbiology. 77 (16): 5697–706. doi:10.1128/AEM.00579-11. PMC 3165245. PMID 21705522.
  6. Li L, Jeon Y, Lee SH, Ryu H, Santo Domingo JW, Seo Y (July 2019). "Dynamics of the physiochemical and community structures of biofilms under the influence of algal organic matter and humic substances". Water Research. 158: 136–145. doi:10.1016/j.watres.2019.04.014. PMC 6563348. PMID 31026675.
  7. "LPSN - List of Prokaryotic names with Standing in Nomenclature".
  8. Glaeser SP, Kämpfer P (2014). "The Family Sphingomonadaceae". In Rosenberg E, DeLong EF, Lory S, Stackebrandt E (eds.). The Prokaryotes. The Prokaryotes: Alphaproteobacteria and Betaproteobacteria. Berlin, Heidelberg: Springer. pp. 641–707. doi:10.1007/978-3-642-30197-1_302. ISBN 978-3-642-30197-1.
  9. Balkwill DL, Fredrickson JK, Romine MR (12 October 2006). "Sphingomonas and Related Genera". The Prokaryotes, A Handbook of the Biology of Bacteria. Volume 7: Proteobacteria: Delta and Epsilon Subclasses. Deeply Rooting Bacteria. ISBN 978-0-387-33493-6.
  10. Oh S, Choi D (April 2019). "Microbial Community Enhances Biodegradation of Bisphenol A Through Selection of Sphingomonadaceae". Microbial Ecology. 77 (3): 631–639. doi:10.1007/s00248-018-1263-4. PMID 30251120. S2CID 52811122.
  11. Li H, Jiao X, Sun Y, Sun S, Feng Z, Zhou W, Zhu H (November 2016). "The preparation and characterization of a novel sphingan WL from marine Sphingomonas sp. WG". Scientific Reports. 6 (1): 37899. Bibcode:2016NatSR...637899L. doi:10.1038/srep37899. PMC 5121650. PMID 27883073.
  12. Yang S, Fei Q, Zhang Y, Contreras LM, Utturkar SM, Brown SD, et al. (November 2016). "Zymomonas mobilis as a model system for production of biofuels and biochemicals". Microbial Biotechnology. 9 (6): 699–717. doi:10.1111/1751-7915.12408. PMC 5072187. PMID 27629544.
  13. Conway T (September 1992). "The Entner-Doudoroff pathway: history, physiology and molecular biology". FEMS Microbiology Reviews. 9 (1): 1–27. doi:10.1111/j.1574-6968.1992.tb05822.x. PMID 1389313.
  14. Pérez-Torrado R, Querol A (2016). "Opportunistic Strains of Saccharomyces cerevisiae: A Potential Risk Sold in Food Products". Frontiers in Microbiology. 6: 1522. doi:10.3389/fmicb.2015.01522. PMC 4705302. PMID 26779173.
  15. Yanase H (2014-01-01). "Zymomonas". In Batt CA, Tortorello ML (eds.). Encyclopedia of Food Microbiology. Encyclopedia of Food Microbiology (Second Edition). Oxford: Academic Press. pp. 856–863. doi:10.1016/b978-0-12-384730-0.00365-7. ISBN 978-0-12-384733-1.
  16. Harrison MA (2009-01-01). "Beer/Brewing". In Schaechter M (ed.). Encyclopedia of Microbiology (Third ed.). Oxford: Academic Press. pp. 23–33. doi:10.1016/b978-012373944-5.00117-6. ISBN 978-0-12-373944-5. Missing or empty |title= (help)
  17. Kyselková M, Almario J, Kopecký J, Ságová-Marečková M, Haurat J, Muller D, et al. (August 2014). "Evaluation of rhizobacterial indicators of tobacco black root rot suppressiveness in farmers' fields". Environmental Microbiology Reports. 6 (4): 346–53. doi:10.1111/1758-2229.12131. PMID 24992533.
  18. Gómez Expósito R, de Bruijn I, Postma J, Raaijmakers JM (2017-12-18). "Current Insights into the Role of Rhizosphere Bacteria in Disease Suppressive Soils". Frontiers in Microbiology. 8: 2529. doi:10.3389/fmicb.2017.02529. PMC 5741648. PMID 29326674.
  19. Jin L, Ko SR, Jin CZ, Jin FJ, Li T, Ahn CY, Oh HM, Lee HG (2019-08-01). "Description of novel members of the family Sphingomonadaceae: Aquisediminimonas profunda gen. nov., sp. nov., and Aquisediminimonas sediminicola sp. nov., isolated from freshwater sediment". International Journal of Systematic and Evolutionary Microbiology. 69 (8): 2179–2186. doi:10.1099/ijsem.0.003347. PMID 31204973.
  20. Li D, Li Z, Yu J, Cao N, Liu R, Yang M (November 2010). "Characterization of bacterial community structure in a drinking water distribution system during an occurrence of red water". Applied and Environmental Microbiology. 76 (21): 7171–80. doi:10.1128/AEM.00832-10. PMC 2976220. PMID 20851995.
  21. Narciso-da-Rocha C, Vaz-Moreira I, Manaia CM (January 2014). "Genotypic diversity and antibiotic resistance in Sphingomonadaceae isolated from hospital tap water". The Science of the Total Environment. 466–467: 127–35. Bibcode:2014ScTEn.466..127N. doi:10.1016/j.scitotenv.2013.06.109. PMID 23892027.
  22. Soto-Giron MJ, Rodriguez-R LM, Luo C, Elk M, Ryu H, Hoelle J, et al. (May 2016). Besser TE (ed.). "Biofilms on Hospital Shower Hoses: Characterization and Implications for Nosocomial Infections". Applied and Environmental Microbiology. 82 (9): 2872–2883. doi:10.1128/AEM.03529-15. PMC 4836434. PMID 26969701.
  23. Poza M, Gayoso C, Gómez MJ, Rumbo-Feal S, Tomás M, Aranda J, et al. (2012-08-29). "Exploring bacterial diversity in hospital environments by GS-FLX Titanium pyrosequencing". PLOS ONE. 7 (8): e44105. Bibcode:2012PLoSO...744105P. doi:10.1371/journal.pone.0044105. PMC 3430676. PMID 22952889.
  24. Meric M, Willke A, Kolayli F, Yavuz S, Vahaboglu H (March 2009). "Water-borne Sphingomonas paucimobilis epidemic in an intensive care unit". The Journal of Infection. 58 (3): 253–5. doi:10.1016/j.jinf.2009.01.007. PMID 19232740.
  25. Chapelle E, Mendes R, Bakker PA, Raaijmakers JM (January 2016). "Fungal invasion of the rhizosphere microbiome". The ISME Journal. 10 (1): 265–8. doi:10.1038/ismej.2015.82. PMC 4681858. PMID 26023875.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.