Thiaminase

Thiaminase is an enzyme that metabolizes or breaks down thiamine into two molecular parts. It is an antinutrient when consumed.

Thiamine pyridinylase
Identifiers
EC number2.5.1.2
CAS number9030-35-7
Databases
IntEnzIntEnz view
BRENDABRENDA entry
ExPASyNiceZyme view
KEGGKEGG entry
MetaCycmetabolic pathway
PRIAMprofile
PDB structuresRCSB PDB PDBe PDBsum
Aminopyrimidine aminohydrolase
Identifiers
EC number3.5.99.2
Databases
IntEnzIntEnz view
BRENDABRENDA entry
ExPASyNiceZyme view
KEGGKEGG entry
MetaCycmetabolic pathway
PRIAMprofile
PDB structuresRCSB PDB PDBe PDBsum
Gene OntologyAmiGO / QuickGO

The old name was "aneurinase".[1]

There are two types:[2]

Sources

Source include:

Effects

Its physiological role for fish, bacterial cell or insect is not known. However, in ferns it is thought to offer protection from insects[9] while studies have shown that thiamine hydrolase (thiaminase type 2) which was originally thought to be involved solely in the degradation of thiamine has actually been identified as having a role in thiamine degradation with the salvage of the pyrimidine moiety where thiamin hydrolysis product N-formyl-4-amino-5-aminomethyl-2-methylpyrimidine is transported into the cell and deformylated by the ylmB-encoded amidohydrolase and hydrolyzed to 5-aminoimidazole ribotide.[10]

It was first described as the cause of highly mortal ataxic neuropathy in fur producing foxes eating raw entrails of river fish like carp in 1941.

It is also known as the cause of cerebrocortical necrosis of cattle and polioencephalomalasia of sheep eating thiaminase containing plants.[11][12]

It was once causing economical losses in raising fisheries, e.g. in yellowtail fed raw anchovy as a sole feed for a certain period, and also in sea bream and rainbow trout. The same problem is being studied in a natural food chain system.[13]

The larvae of a wild silk worm Anaphe venata are being consumed in a rain forest district of Nigeria as a supplemental protein nutrition, and the heat resistant thiaminase in it is causing an acute seasonal cerebellar ataxia.[14]

In 1860–61, Burke and Wills were the first Europeans to cross Australia south to north; on their return they subsisted primarily on raw nardoo-fern. It is possible that this led to their death due to the extremely high levels of thiaminase contained in nardoo. The Aborigines prepared nardoo by soaking the sporocarps in water for at least a day to avoid the effects of thiamine deficiency that would result from ingesting the leaves raw. In the explorers' journals they noted many symptoms of thiamine deficiency, so it is thought that they did not soak the nardoo long enough. Eventually thiamine deficiency could have led to their demise. It is noteworthy to mention that there are several other hypotheses regarding what may have killed Burke and Wills and it is widely disagreed upon by historians and scientists alike.[2]

References

  1. Fujita A, Nose Y, Kozuka S, Tashiro T, Ueda K, Sakamoto S (May 1952). "Studies on thiaminase. I. Activation of thiamine breakdown by organic bases". The Journal of Biological Chemistry. 196 (1): 289–95. PMID 12980969.
  2. Thiaminases
  3. NcCleary BV, Chick BF (1977). "The purification and properties of a thiaminaseI from Nardoo (Marsilea drummondii)". Phytochemistry. 16 (2): 207–213. doi:10.1016/S0031-9422(00)86787-4.
  4. Boś M, Kozik A (February 2000). "Some molecular and enzymatic properties of a homogeneous preparation of thiaminase I purified from carp liver". Journal of Protein Chemistry. 19 (2): 75–84. doi:10.1023/A:1007043530616. PMID 10945431.
  5. Wittliff JL, Airth RL (February 1968). "The extracellular thiaminase I of Bacillus thiaminolyticus. I. Purification and physicochemical properties". Biochemistry. 7 (2): 736–44. doi:10.1021/bi00842a032. PMID 4966932.
  6. Nakatsuka T, Suzuki K, Nakano Y, Kitaoka S (1988). "Physicochemical properties of intracellular thiaminase II of Bacillus aneurinolyticus". Vitamins (Japan). 62: 15–22.
  7. Toms AV, Haas AL, Park JH, Begley TP, Ealick SE (February 2005). "Structural characterization of the regulatory proteins TenA and TenI from Bacillus subtilis and identification of TenA as a thiaminase II". Biochemistry. 44 (7): 2319–29. doi:10.1021/bi0478648. PMID 15709744.
  8. Nishimune T, Watanabe Y, Okazaki H, Akai H (2000). "Thiamin is decomposed due to Anaphe spp. entomophagy in seasonal ataxia patients in Nigeria". J. Nutr. 130: 1625–28.
  9. Vetter J (2010). "Toxicological and Medicinal Aspects of the Most Frequent Fern Species, Pteridium aquilinum (L.) Kuhn". Working with Ferns: Issues and Applications. pp. 361–375. doi:10.1007/978-1-4419-7162-3_25.
  10. Jenkins AH, Schyns G, Potot S, Sun G, Begley TP (August 2007). "A new thiamin salvage pathway". Nature Chemical Biology. 3 (8): 492–7. doi:10.1038/nchembio.2007.13. PMID 17618314.
  11. Ramos JJ, Marca C, Loste A, García de Jalón JA, Fernández A, Cubel T (February 2003). "Biochemical changes in apparently normal sheep from flocks affected by polioencephalomalacia". Veterinary Research Communications. 27 (2): 111–24. doi:10.1023/A:1022807119539. PMID 12718505.
  12. Evans WC (1975). "Thiaminases and their effects on animals". Vitamins and Hormones. 33: 467–504. doi:10.1016/S0083-6729(08)60970-X. ISBN 978-0-12-709833-3. PMID 779253.
  13. Fisher JP, Brown SB, Wooster GW, Bowser PR (December 1998). "Maternal blood, egg and larval thiamin levels correlate with larval survival in landlocked Atlantic salmon". The Journal of Nutrition. 128 (12): 2456–66. doi:10.1093/jn/128.12.2456. PMID 9868194.
  14. Adamolekun B, Adamolekun WE, Sonibare AD, Sofowora G (March 1994). "A double-blind, placebo-controlled study of the efficacy of thiamine hydrochloride in a seasonal ataxia in Nigerians". Neurology. 44 (3 Pt 1): 549–51. doi:10.1212/wnl.44.3_part_1.549. PMID 8145931.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.