Antimony triselenide

Antimony triselenide is the chemical compound with the formula Sb2Se3. The material exists as the sulfosalt mineral antimonselite, which crystallizes in an orthorhombic space group.[2] In this compound, antimony has a formal oxidation state +3 and selenium 2. The bonding in this compound has covalent character as evidenced by the black color and semiconducting properties of this and related materials.[3] The low-frequency dielectric constant (ε0) has been measured to be 133 along the c axis of the crystal at room temperature, which is unusually large.[4] Its band gap is 1.18 eV at room temperature.[5]

Antimony triselenide
Names
Other names
antimonselite
selenoxyantimony
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.013.870
Properties
Sb2Se3
Molar mass 480.4 g/mol
Appearance black crystals
Density 5.81 g/cm3, solid
Melting point 611 °C (1,132 °F; 884 K)
Structure
Orthorhombic, oP20, SpaceGroup = Pnma, No. 62
Hazards
NIOSH (US health exposure limits):
PEL (Permissible)
TWA 0.5 mg/m3 (as Sb)[1]
REL (Recommended)
TWA 0.5 mg/m3 (as Sb)[1]
Related compounds
Other anions
antimony(III) oxide, antimony(III) sulfide, antimony(III) telluride
Other cations
arsenic(III) selenide, bismuth(III) selenide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Y verify (what is YN ?)
Infobox references

The compound may be formed by the reaction of antimony with selenium and has a melting point of 885 K.[3]

Applications

Sb2Se3 is now being actively explored for application thin-film solar cells. A record light-to-electricity conversion efficiency of 9.2% has been reported.[6]

References

  1. NIOSH Pocket Guide to Chemical Hazards. "#0036". National Institute for Occupational Safety and Health (NIOSH).
  2. Jambor, J. L.; Grew, E. S."New Mineral Names" American Mineralogist, Volume 79, pages 387-391, 1994.
  3. Madelung, O (2004). Semiconductors: data handbook (3rd ed.). Springer. ISBN 9783540404880.
  4. Petzelt, J.; Grigas, J. (January 1973). "Far infrared dielectric dispersion in Sb2S3, Bi2S3 and Sb2Se3 single crystals". Ferroelectrics. 5 (1): 59–68. doi:10.1080/00150197308235780. ISSN 0015-0193.
  5. Birkett, Max; Linhart, Wojciech M.; Stoner, Jessica; Phillips, Laurie J.; Durose, Ken; Alaria, Jonathan; Major, Jonathan D.; Kudrawiec, Robert; Veal, Tim D. (2018). "Band gap temperature-dependence of close-space sublimation grown Sb2Se3 by photo-reflectance". APL Materials. 6 (8): 084901. doi:10.1063/1.5027157.
  6. Wong, Lydia Helena; Zakutayev, Andriy; Major, Jonathan Douglas; Hao, Xiaojing; Walsh, Aron; Todorov, Teodor K.; Saucedo, Edgardo (2019). "Emerging inorganic solar cell efficiency tables (Version 1)". J Phys Energy. 1 (3): 032001. doi:10.1088/2515-7655/ab2338.


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.