Ecosystem engineer
An ecosystem engineer is any animal that creates, significantly modifies, maintains or destroys a habitat. These organisms can have a large impact on species richness and landscape-level heterogeneity of an area.[1] As a result, ecosystem engineers are important for maintaining the health and stability of the environment they are living in. Since all organisms impact the environment they live in in one way or another, it has been proposed that the term "ecosystem engineers" be used only for keystone species whose behavior very strongly affects other organisms.[2]
Types
Jones et al.[3] identified two different types of ecosystem engineers:
Allogenic engineers
Allogenic engineers modify the biophysical environment by mechanically changing living or nonliving materials from one form to another. Beavers are the original model for ecosystem engineers; in the process of clearcutting and damming, beavers alter their ecosystem extensively. The addition of a dam will change both the distribution and the abundance of many organisms in the area.[2] Caterpillars are another example in that by creating shelters from leaves, they are also creating shelters for other organisms which may occupy them either simultaneously or subsequently.[4] An additional example may be that of woodpeckers or other birds who create holes in trees for them to nest in. Once these birds are through with them, the holes are used by other species of birds or mammals for housing.[2]
Autogenic engineers
Autogenic engineers modify the environment by modifying themselves. Trees are a good example, because as they grow, their trunks and branches create habitats for other living things; these may include squirrels, birds or insects among others. In the tropics, lianas connect trees, which allow many animals to travel exclusively through the forest canopy.[5]
Importance
Being able to identify ecosystem engineers in an environment can be important when looking at the influence these individuals may have over other organisms living in the same environment – especially in terms of resource availability.[6]
The presence of some ecosystem engineers has been linked to higher species richness at the landscape level. By modifying the habitat, organisms like the beaver create more habitat heterogeneity and so can support species not found elsewhere.[1] Thoughts may be that similar to other umbrella species by conserving an ecosystem engineer you may be able to protect the overall diversity of a landscape.[1] Beavers have also been shown to maintain habitats in such a way as to protect the rare Saint Francis' satyr butterfly and increase plant diversity.[7]
Biodiversity may also be affected by ecosystem engineer's ability to increase the complexity of processes within an ecosystem, potentially allowing greater species richness and diversity in the local environments. As an example, beavers have the capacity to modify riparian forest and expand wetland habitats, which results in an increase of the diversity of the habitats by allowing a greater number of species to inhabit the landscape. Coral-reef habitats, created by the ecosystem engineer coral species, hold some of the highest abundances of aquatic species in the world.[8]
Introduced species as ecosystem engineers
Species are able to be transported across all parts of the world by humans or human-made vessels at boundless rates resulting in foreign ecosystem engineers changing the dynamics of species interactions and the possibility for engineering to occur in locations that would not have been accessible by engineers without the mediation by humans.
Introduced species, which may be invasive species, are often ecosystem engineers. Kudzu, a leguminous plant introduced to the southeast U.S., changes the distribution and number of animal and bird species in the areas it invades. It also crowds out native plant species. The zebra mussel is an ecosystem engineer in North America. By providing refuge from predators, it encourages the growth of freshwater invertebrates through increasing microhabitats. Light penetration into infected lakes also improves the ecosystem, resulting in an increase in algae. In contrast to the benefits some ecosystem engineers can cause, invasive species often have the reverse effect.
Humans as ecosystem engineers
Humans are thought to be one of the most dramatic ecosystem engineers. Niche construction has been prevalent since the earliest days of human activity.[9] Through urban development, agricultural practices, logging, damming and mining, humans have changed the way they interact with the environment. This interaction is more studied in the field of human ecology.
Due to the complexity of many communities and ecosystems, restoration projects are often difficult. Ecosystem engineers have been proposed as a means to restore a given area to its previous state. While ideally these would all be natural agents, with today's level of development some form of human intervention may be necessary as well. In addition to being able to assist in restoration ecology, ecosystem engineers may be a helpful agent in invasive species management.[10] New fields are developing which focus on restoring those ecosystems which have been disrupted or destroyed by human activities as well as developing ecosystems that are sustainable with both human and ecological values.[11]
Examples
Terrestrial environments
Besides the previously mentioned beaver acting as an ecosystem engineer, other terrestrial animals do the same. This may be through feeding habits, migration patterns or other behaviors that result in more permanent changes.
Research has suggested primates as ecosystem engineers as a result of their feeding strategies – frugivory and folivory – making them act as seed dispersers.[6] As a whole primates are very abundant and feed on a large quantity of fruit that is then distributed around their territory. Elephants have also been designated ecosystem engineers as they cause very large changes to their environment whether it be through feeding, digging or migratory behavior.[12]
Not only animals are ecosystem engineers. Fungi are able to connect regions that are distant from one another and translocate nutrients between them.[13] Doing so they create nutritional niches for xylophagous invertebrates,[14][15] supply trees with N translocated from previously predated animals[16] or even form an "underground pipeline" that redistributes carbon between trees.[17] Thus fungi are engineers controlling nutrient cycles in ecosystems.
Prairie dogs are another terrestrial form of allogenic ecosystem engineers due to the fact that the species has the ability to perform substantial modifications by burrowing and turning soil. They are able to influence soils and vegetation of the landscape while providing underground corridors for arthropods, avians, other small mammals, and reptiles. This has a positive effect on species richness and diversity of their habitats which results in the prairie dogs being labelled as keystone species.[18]
Marine environments
In marine environments, filter feeders and plankton are ecosystem engineers because they alter turbidity and light penetration, controlling the depth at which photosynthesis can occur.[19] This in turn limits the primary productivity of benthic and pelagic habitats[20] and influences consumption patterns between trophic groups.[21]
Another example of ecosystem engineers in marine environments would be scleractinian corals as they create the framework for the habitat most coral-reef organisms depend on.[22] Some ecosystem engineers such as coral have help maintaining their environment. Parrotfish often help maintain coral reefs as they feed on macroalgae that competes with the coral.[23] As this relationship is mutually beneficial, a positive feedback cycle is formed between the two organisms, making them both responsible for creating and maintaining coral reef ecosystems.[23]
References
- Wright, Justin P; Jones, Clive G; Flecker, Alexander S (2002). "An ecosystem engineer, the beaver, increases species richness at the landscape scale". Ecosystems Ecology. 132 (1): 96–101. Bibcode:2002Oecol.132...96W. doi:10.1007/s00442-002-0929-1. PMID 28547281.
- [Haemig PD (2012). Ecosystem Engineers: wildlife that create, modify and maintain habitats. ECOLOGY.INFO #12]
- Jones, CG; Lawton, JH; Shachak, M (1994). "Organisms as ecosystem engineers". Oikos. 69 (3): 373–386. doi:10.2307/3545850. JSTOR 3545850.
- Jones, CG; Lawton, JH; Shachak, M (1997). "Positive and negative effects of organisms as physical ecosystem engineers". Ecology. 78 (7): 1946–1957. doi:10.2307/2265935. JSTOR 2265935.
- "Ecosystem engineer".
- Chapman, Colin A; et al. (2013). "Are primates ecosystem engineers?". International Journal of Primatology. 34: 1–14. doi:10.1007/s10764-012-9645-9.
- Bartel, Rebecca A; Haddad, Nick M; Wright, Justin P (2010). "Ecosystem engineers maintain a rare species of butterfly and increase plant diversity". Oikos. 119 (5): 883–890. doi:10.1111/j.1600-0706.2009.18080.x.
- Caliman, Adriano; Carneiro, Luciana S.; Leal, João J. F.; Farjalla, Vinicius F.; Bozelli, Reinaldo L.; Esteves, Francisco A. (1 September 2013). "Biodiversity effects of ecosystem engineers are stronger on more complex ecosystem processes". Ecology. 94 (9): 1977–1985. doi:10.1890/12-1385.1. ISSN 1939-9170. PMID 24279269.
- Smith, Bruce D. (30 March 2007). "The Ultimate Ecosystem Engineers". Science. 315 (5820): 1797–1798. doi:10.1126/science.1137740. ISSN 0036-8075. PMID 17395815.
- Byers, James E; et al. (2006). "Using ecosystem engineers to restore ecological systems". Ecology and Evolution. 21 (9): 493–500. doi:10.1016/j.tree.2006.06.002. PMID 16806576.
- Mitsch, William J (2012). "What is ecological engineering?". Ecological Engineering. 45: 5–12. doi:10.1016/j.ecoleng.2012.04.013.
- [Hayes, Gary. (2012). Elephants (and extinct relatives) as earth-movers and ecosystem engineers. Geomorphology 157–158: 99–107.]
- Boddy, Lynne; Watkinson, Sarah C. (31 December 1995). "Wood decomposition, higher fungi, and their role in nutrient redistribution". Canadian Journal of Botany. 73 (S1): 1377–1383. doi:10.1139/b95-400.
- Filipiak, Michał; Sobczyk, Łukasz; Weiner, January (9 April 2016). "Fungal Transformation of Tree Stumps into a Suitable Resource for Xylophagous Beetles via Changes in Elemental Ratios". Insects. 7 (2): 13. doi:10.3390/insects7020013. PMC 4931425.
- Filipiak, Michał; Weiner, January; Wilson, Richard A. (23 December 2014). "How to Make a Beetle Out of Wood: Multi-Elemental Stoichiometry of Wood Decay, Xylophagy and Fungivory". PLOS ONE. 9 (12): e115104. Bibcode:2014PLoSO...9k5104F. doi:10.1371/journal.pone.0115104. PMC 4275229. PMID 25536334.
- Wardle, D. A. (11 June 2004). "Ecological Linkages Between Aboveground and Belowground Biota". Science. 304 (5677): 1629–1633. Bibcode:2004Sci...304.1629W. doi:10.1126/science.1094875. PMID 15192218.
- Klein, T.; Siegwolf, R. T. W.; Korner, C. (14 April 2016). "Belowground carbon trade among tall trees in a temperate forest". Science. 352 (6283): 342–344. Bibcode:2016Sci...352..342K. doi:10.1126/science.aad6188. PMID 27081070.
- Baker, Bruce W.; Augustine, David J.; Sedgwick, James A.; Lubow, Bruce C. (1 February 2013). "Ecosystem engineering varies spatially: a test of the vegetation modification paradigm for prairie dogs". Ecography. 36 (2): 230–239. doi:10.1111/j.1600-0587.2012.07614.x. ISSN 1600-0587.
- Berke, Sarah K (2012). "Functional Groups of Ecosystem Engineers: A Proposed Classification with Comments on Current Issues". Integrative and Comparative Biology. 50 (2): 147–157. doi:10.1093/icb/icq077. PMID 21558195.
- Abrahams, MV; Kattenfeld, MG (1997). "The role of turbidity as a constraint on predator–prey interactions in aquatic environments". Behavioral Ecology and Sociobiology. 40 (3): 169–74. doi:10.1007/s002650050330.
- Hartman, EJ; Abrahams, MV (2000). "Sensory compensation and the detection of predators: the interaction between chemical and visual information". Proceedings of the Royal Society B: Biological Sciences. 267 (1443): 571–75. doi:10.1098/rspb.2000.1039. PMC 1690576. PMID 10787160.
- Wild, Christian; et al. (2011). "Climate change impedes scleractinian corals as primary reef ecosystem engineers". Marine and Freshwater Research. 62 (2): 205–215. doi:10.1071/mf10254.
- Bozec, Yves-Marie; et al. (2013). "Reciprocal facilitation and non-linearity maintain habitat engineering on coral reefs". Oikos. 122 (3): 428–440. CiteSeerX 10.1.1.457.9673. doi:10.1111/j.1600-0706.2012.20576.x.
Bibliography
- Buse, J; Ranius, T; Assmann, T (2008). "An endangered longhorn beetle associated with old oaks and its possible role as an ecosystem engineer". Conservation Biology. 22 (2): 329–337. doi:10.1111/j.1523-1739.2007.00880.x. PMID 18261146.
- Crawford, KM; Crutsinger, GM; Sander, NJ (2007). "Host-plant genotypic diversity mediates the distribution of an ecosystem engineer". Ecology. 88 (8): 2114–2120. doi:10.1890/06-1441.1. PMID 17824442.
- Commito, J. A.; Celano, E. A.; Celico, H. J.; Como, S.; Johnson, C. P. (2005). "Mussels matter: postlarval dispersal dynamics altered by a spatially complex ecosystem engineer". Journal of Experimental Marine Biology and Ecology. 316 (2): 133–147. doi:10.1016/j.jembe.2004.10.010.
- Wright, JP; Jones, CG (2006). "The concept of organisms as ecosystem engineers ten years on: progress, limitations, and challenges". BioScience. 56 (3): 203–209. doi:10.1641/0006-3568(2006)056[0203:tcooae]2.0.co;2.
External links
- A lecture by Moshe Shachak, the developer of the concept of ecosystem engineers (together with CG. Jones and JH. Lawton) during the 90's.