Toothpaste

Toothpaste is a paste or gel dentifrice used with a toothbrush to clean and maintain the aesthetics and health of teeth. Toothpaste is used to promote oral hygiene: it is an abrasive that aids in removing dental plaque and food from the teeth, assists in suppressing halitosis, and delivers active ingredients (most commonly fluoride) to help prevent tooth decay (dental caries) and gum disease (gingivitis).[1] Salt and sodium bicarbonate (baking soda) are among materials that can be substituted for commercial toothpaste. Large amounts of swallowed toothpaste can be toxic.[2]

Toothpaste from a tube being applied to a toothbrush

Usefulness

Toothpastes are generally useful to maintain dental health and preventing dental disease like cavities. It also helps control and remove plaque buildup. It also helps in preventing and destroying the germ buildup in teeth and maintaining gum health. However, a 2016 systematic review indicates that using toothpaste when brushing the teeth does not impact the level of plaque removal.[3]

Ingredients

In addition to 20%–42% water, toothpastes are derived from a variety of components, the three main ones being abrasives, fluoride, and detergents.

Abrasives

Abrasives constitute at least 50% of a typical toothpaste. These insoluble particles are designed to help remove plaque from the teeth.[4] The removal of plaque and calculus prevents the accumulation of tartar and is widely claimed to help minimize cavities and periodontal disease, although the clinical significance of this benefit is debated.[5] Representative abrasives include particles of aluminum hydroxide (Al(OH)3), calcium carbonate (CaCO3), various calcium hydrogen phosphates, various silicas and zeolites, and hydroxyapatite (Ca5(PO4)3OH).

Abrasives, like the dental polishing agents used in dentists' offices, also cause a small amount of enamel erosion which is termed "polishing" action. Some brands contain powdered white mica, which acts as a mild abrasive, and also adds a cosmetically pleasing glittery shimmer to the paste. The polishing of teeth removes stains from tooth surfaces, but has not been shown to improve dental health over and above the effects of the removal of plaque and calculus.[6]

The abrasive effect of toothpaste is indicated by its RDA value. Too high RDA values are deleterious. Some dentists recommend toothpaste with an RDA value no higher than 50 for daily use.

Fluorides

Fluoride in various forms is the most popular active ingredient in toothpaste to prevent cavities.[7] Fluoride is present in small amounts in plants, animals, and some natural water sources. The additional fluoride in toothpaste has beneficial effects on the formation of dental enamel and bones. Sodium fluoride (NaF) is the most common source of fluoride, but stannous fluoride (SnF2), olaflur (an organic salt of fluoride), and sodium monofluorophosphate (Na2PO3F) are also used.[8] Stannous fluoride has been shown to be more effective than sodium fluoride in reducing the incidence of dental caries[9] and controlling gingivitis, but causes somewhat more surface stains.[10]

Much of the toothpaste sold in the United States has 1,000 to 1,100 parts per million fluoride. In European countries, such as the UK or Greece, the fluoride content is often higher; a NaF content of 0.312% w/w (1,450 ppm fluoride) is common. All of these concentrations are likely to prevent tooth decay, according to a 2019 Cochrane review.[11] Concentrations below 1,000 ppm are not likely to be preventive, and the preventive effect increases with concentration. Clinical trials support the use of high fluoride dentifrices,[12] as it was found to reduce the amount of plaque accumulated, decrease the number of mutans streptococci and lactobacilli and possibly promote calcium fluoride deposits to a higher degree than after the use of traditional fluoride containing dentifrices.[13] However, these effects must be balanced with the increased risk of harm at higher concentrations.[12]

Surfactants

Many, although not all, toothpastes contain sodium lauryl sulfate (SLS) or related surfactants (detergents). SLS is found in many other personal care products as well, such as shampoo, and is mainly a foaming agent, which enables uniform distribution of toothpaste, improving its cleansing power.[6]

Antibacterial agents

Triclosan, an antibacterial agent, is a common toothpaste ingredient in the United Kingdom. Triclosan or zinc chloride prevent gingivitis and, according to the American Dental Association, helps reduce tartar and bad breath.[1][14] A 2006 review of clinical research concluded there was evidence for the effectiveness of 0.30% triclosan in reducing plaque and gingivitis.[15] Another Cochrane review in 2013 has found that triclosan achieved a 22% reduction in plaque, and in gingivitis, a 48% reduction in bleeding gums. However, there was insufficient evidence to show a difference in fighting periodontitis and there was no evidence either of any harmful effects associated with the use of triclosan toothpastes for more than 3 years. The evidence relating to plaque and gingivitis was considered to be of moderate quality while for periodontitis was low quality.[16] Chlorhexidine is another antimicrobial agent used in toothpastes, however it is more commonly added in mouthwash products.[17] Sodium laureth sulfate, a foaming agent, is a common toothpaste ingredient that also possesses some antimicrobial activities.[18] There are also many commercial products available in the market containing different essential oils, herbal ingredients (e.g. chamomile, neem, chitosan, Aloe vera), and natural or plant extracts (e.g. hinokitiol).[19][20] These ingredients are claimed by the manufacturers to fight plaque, bad breath and prevent gum disease. A 2020 systematic metareview found that herbal toothpastes are as effective as non-herbal toothpastes in reducing dental plaque at shorter period of follow-up (4 weeks).[21] However, this evidence comes from low-quality studies.

Flavorants

Toothpaste comes in a variety of colors and flavors, intended to encourage use of the product. The three most common flavorants are peppermint, spearmint, and wintergreen. Toothpaste flavored with peppermint-anise oil is popular in the Mediterranean region. These flavors are provided by the respective oils, e.g. peppermint oil.[6] More exotic flavors include Anethole anise, apricot, bubblegum, cinnamon, fennel, lavender, neem, ginger, vanilla, lemon, orange, and pine. Alternatively, unflavored toothpastes exist.

Remineralizers

Hydroxyapatite nanocrystals and a variety of calcium phosphates are included in formulations for remineralization,[22] i.e. the reformation of enamel.

Toothpaste is sold in many brands.

Miscellaneous components

Agents are added to suppress the tendency of toothpaste to dry into a powder. Included are various sugar alcohols, such as glycerol, sorbitol, or xylitol, or related derivatives, such as 1,2-propylene glycol and polyethyleneglycol.[23] Strontium chloride or potassium nitrate is included in some toothpastes to reduce sensitivity. Two systemic meta-analysis reviews reported that arginine, and calcium sodium phosphosilicate - CSPS containing toothpastes are also effective in alleviating dentinal hypersensitivity respectively.[24][25] Another randomized clinical trial found superior effects when both formulas were combined together.[26]

Sodium polyphosphate is added to minimize the formation of tartar. Other example to components in toothpastes is the Biotene, which has proved its efficiency in relieving the symptoms of dry mouth in people who suffer from xerostomia according to the results of a randomized clinical trial.[27]

Chlorohexidine mouthwash has been popular for its positive effect on controlling plaque and gingivitis,[28] however, a systemic review studied the effects of chlorohexidine toothpastes and found insufficient evidence to support its use, tooth surface discoloration was observed as a side effect upon using it, which is considered a negative side effect that can affect patients' compliance.[29]

Sodium hydroxide, also known as lye or caustic soda, is listed as an inactive ingredient in some toothpaste, for example Colgate Total.

Xylitol

Some studies have demonstrated that toothpastes with xylitol as an ingredient are more effective at preventing dental caries in permanent teeth of children than toothpastes containing fluoride alone. Furthermore, xylitol has not been found to cause any harmful effects. Further investigation into the efficacy of toothpastes containing this product is however required as the currently available studies are of low quality and therefore the results of such studies must be applied carefully.[30]

Safety

Icelandic postage stamp encouraging use of fluoridated toothpaste

Fluoride

Fluoride-containing toothpaste can be acutely toxic if swallowed in large amounts,[31][32] but instances are exceedingly rare and result from prolonged and excessive use of toothpaste (i.e. several tubes per week).[33] Approximately 15 mg/kg body weight is the acute lethal dose, even though as small amount as 5 mg/kg may be fatal to some children.[34]

The risk of using fluoride is low enough that the use of full-strength toothpaste (1350–1500 ppm fluoride) is advised for all ages. However, smaller volumes are used for young children, for example, a smear of toothpaste until three years old.[32] A major concern of dental fluorosis is for children under 12 months ingesting excessive fluoride through toothpaste. Nausea and vomiting are also problems which might arise with topical fluoride ingestion.[34]

Diethylene glycol

The inclusion of sweet-tasting but toxic diethylene glycol in Chinese-made toothpaste led to a recall in 2007 involving multiple toothpaste brands in several nations.[35] The world outcry made Chinese officials ban the practice of using diethylene glycol in toothpaste.[36]

Triclosan

Reports have suggested triclosan, an active ingredient in many kinds of toothpastes, can combine with chlorine in tap water to form chloroform,[37] which the United States Environmental Protection Agency classifies as a probable human carcinogen. An animal study revealed the chemical might modify hormone regulation, and many other lab researches proved bacteria might be able to develop resistance to triclosan in a way which can help them to resist antibiotics also.[38]

Polyethylene glycol - PEG

PEG is a common ingredient in some of the formulas of toothpastes; it is a hydrophilic polymer that acts as a dispersant in toothpastes. Also, it is used in many cosmetic and pharmaceutical formulas, for example: ointments, osmotic laxatives, some of the non steroidal anti-inflammatory drugs, other medications and household products.[39] However, 37 cases of PEG hypersensitivity (delayed and immediate) to PEG-containing substances have been reported since 1977,[40] suggesting that they have unrecognized allergenic potential.[40]

Miscellaneous issues and debates

With the exception of toothpaste intended to be used on pets such as dogs and cats, and toothpaste used by astronauts, most toothpaste is not intended to be swallowed, and doing so may cause nausea or diarrhea. Tartar fighting toothpastes have been debated.[41] Sodium lauryl sulfate (SLS) has been proposed to increase the frequency of mouth ulcers in some people, as it can dry out the protective layer of oral tissues, causing the underlying tissues to become damaged.[42] In studies conducted by the university of Oslo on recurrent aphthous ulcers, it was found that SLS has a denaturing effect on the oral mucin layer, with high affinity for proteins, thereby increasing epithelial permeability.[43] In a double-blind cross-over study, a significantly higher frequency of aphthous ulcers was demonstrated when patients brushed with an SLS-containing versus a detergent-free toothpaste. Also patients with Oral Lichen Planus who avoided SLS-containing toothpaste benefited.[44][45]

Alteration of taste perception

After using toothpaste, orange juice and other juices have an unpleasant taste. Sodium lauryl sulfate alters taste perception. It can break down phospholipids that inhibit taste receptors for sweetness, giving food a bitter taste. In contrast, apples are known to taste more pleasant after using toothpaste.[46] Distinguishing between the hypotheses that the bitter taste of orange juice results from stannous fluoride or from sodium lauryl sulfate is still an unresolved issue and it is thought that the menthol added for flavor may also take part in the alteration of taste perception when binding to lingual cold receptors.

Whitening toothpastes

Many toothpastes make whitening claims. Some of these toothpastes contain peroxide, the same ingredient found in tooth bleaching gels. The abrasive in these toothpastes, not the peroxide, removes the stains.[47] Whitening toothpaste cannot alter the natural color of teeth or reverse discoloration by penetrating surface stains or decay. To remove surface stains, whitening toothpaste may include abrasives to gently polish the teeth or additives such as sodium tripolyphosphate to break down or dissolve stains. When used twice a day, whitening toothpaste typically takes two to four weeks to make teeth appear whiter. Whitening toothpaste is generally safe for daily use, but excessive use might damage tooth enamel. Teeth whitening gels represent an alternative.[48] A recent systematic review in 2017 concluded that nearly all dentifrices that are specifically formulated for tooth whitening were shown to have a beneficial effect in reducing extrinsic stains, irrespective of whether or not a chemical discoloration agent was added.[49] However, the whitening process can permanently reduce the strength of the teeth, as the process scrapes away a protective outer layer of enamel.[50]

Herbal and natural toothpastes

Companies such as Tom's of Maine, among others, manufacture natural and herbal toothpastes and market them to consumers who wish to avoid the artificial ingredients commonly found in regular toothpastes. Many herbal toothpastes do not contain fluoride or sodium lauryl sulfate. The ingredients found in natural toothpastes vary widely but often include baking soda, aloe, eucalyptus oil, myrrh, camomile, calendula, neem, toothbrush tree, plant extract (strawberry extract), and essential oils.[21] A systemic review in 2014 found insufficient evidence to determine whether the aloe vera herbal dentifrice can reduce plaque or improve gingival health, as the randomized studies were found to be flawed with high risk of bias.[51]

According to a study by the Delhi Institute of Pharmaceutical Sciences and Research, many of the herbal toothpastes being sold in India were adulterated with nicotine.[52]

Charcoal has also been incorporated in toothpaste formulas; however, there is no evidence to determine its safety and effectiveness.[53] A 2020 systematic metareview of 24 comparative Randomised controlled trials, involving 1,597 adults aged 18 to 65, showed herbal toothpaste was superior over non-herbal toothpaste, but not to fluoride toothpaste.[21]

Striped toothpaste

The red area represents the material used for stripes, and the rest is the main toothpaste material. The two materials are not in separate compartments; they are sufficiently viscous that they will not mix. Applying pressure to the tube causes the main material to issue out through the pipe. Simultaneously, some of the pressure is forwarded to the stripe-material, which is thereby pressed onto the main material through holes in the pipe.

Striped toothpaste was invented by Leonard Marraffino in 1955. The patent (US patent 2,789,731, issued 1957) was subsequently sold to Unilever, who marketed the novelty under the Stripe brand-name in the early 1960s. This was followed by the introduction of the Signal brand in Europe in 1965 (UK patent 813,514). Although Stripe was initially very successful, it never again achieved the 8% market share that it cornered during its second year.

Marraffino's design, which remains in use for single-color stripes, is simple. The main material, usually white, sits at the crimp end of the toothpaste tube and makes up most of its bulk. A thin pipe, through which that carrier material will flow, descends from the nozzle to it. The stripe-material (this was red in Stripe) fills the gap between the carrier material and the top of the tube. The two materials are not in separate compartments, but they are sufficiently viscous that they will not mix. When pressure is applied to the toothpaste tube, the main material squeezes down the thin pipe to the nozzle. Simultaneously, the pressure applied to the main material causes pressure to be forwarded to the stripe material, which thereby issues out through small holes (in the side of the pipe) onto the main carrier material as it is passing those holes.

In 1990, Colgate-Palmolive was granted a patent (USPTO 4,969,767) for two differently colored stripes. In this scheme, the inner pipe has a cone-shaped plastic guard around it, and about halfway up its length. Between the guard and the nozzle-end of the tube is a space for the material for one color, which issues out of holes in the pipe. On the other side of the guard is space for second stripe-material, which has its own set of holes.

Striped toothpaste should not be confused with layered toothpaste. Layered toothpaste requires a multi-chamber design (e.g. USPTO 5,020,694), in which two or three layers extrude out of the nozzle. This scheme, like that of pump dispensers (USPTO 4,461,403), is more complicated (and thus, more expensive to manufacture) than either the Marraffino design or the Colgate design.

The iconic depiction of a wave-shaped blob of toothpaste sitting on a toothbrush is called a “nurdle”.[54]

History

Early toothpastes

Since 5000 BC, the Egyptians made a tooth powder, which consisted of powdered ashes of ox hooves, myrrh, powdered and burnt eggshells, and pumice. The Greeks, and then the Romans, improved the recipes by adding abrasives such as crushed bones and oyster shells.[55] In the 9th century, Iraqi musician and fashion designer Ziryab invented a type of toothpaste, which he popularized throughout Islamic Spain. The exact ingredients of this toothpaste are unknown, but it was reported to have been both "functional and pleasant to taste".[56] It is not known whether these early toothpastes were used alone, were to be rubbed onto the teeth with rags, or were to be used with early toothbrushes, such as neem-tree twigs and miswak. During Japan's Edo period, inventor Hiraga Gennai's Hika rakuyo (1769), contained advertisements for Sosekiko, a "toothpaste in a box."[57] Toothpastes or powders came into general use in the 19th century.

Tooth powder

Tooth powders for use with toothbrushes came into general use in the 19th century in Britain. Most were homemade, with chalk, pulverized brick, or salt as ingredients. An 1866 Home Encyclopedia recommended pulverized charcoal, and cautioned that many patented tooth powders that were commercially marketed did more harm than good.

Arm & Hammer marketed a baking soda-based toothpowder in the United States until approximately 2000, and Colgate currently markets toothpowder in India and other countries.

Modern toothpaste

An 18th-century American and British toothpaste recipe called for burned bread. Another formula around this time called for dragon's blood (a resin), cinnamon, and burned alum.[58]

By 1900, a paste made of hydrogen peroxide and baking soda was recommended for use with toothbrushes. Pre-mixed toothpastes were first marketed in the 19th century, but did not surpass the popularity of tooth-powder until World War I.

Together with Willoughby D. Miller, Newell Sill Jenkins developed a toothpaste and named it Kolynos, the first toothpaste containing disinfectants.[59] The name's origin is from Greek Kolyo nosos (κωλύω νόσος), meaning "disease prevention". Numerous attempts to produce the toothpaste by pharmacists in Europe have been uneconomic. After returning to the US, he continued experimenting with Harry Ward Foote (1875-1942), professor of chemistry at Sheffield Chemical Laboratory of Yale University.[60] After 17 years of development of Kolynos and clinical trials, Jenkins retired and transferred the production and distribution to his son Leonard A. Jenkins, who brought the first toothpaste tubes on the market on April 13, 1908. Within a few years the company expanded in North America, Latin America, Europe and the Far East. A branch operation opened in London in 1909. In 1937, Kolynos was produced in 22 countries and sold in 88 countries. Kolynos has been sold mainly in South America and in Hungary. Colgate-Palmolive took over the production of American Home Products in 1995 at a cost of one billion US dollars.[61]

Fluoride was first added to toothpastes in the 1890s. Tanagra, containing calcium fluoride as the active ingredient, was sold by Karl F. Toellner Company, of Bremen, Germany, based upon the early work of chemist Albert Deninger.[62] An analogous invention by Roy Cross, of Kansas City, Missouri, was initially criticized by the American Dental Association (ADA) in 1937. Fluoride toothpastes developed in the 1950s received the ADA's approval. To develop the first ADA-approved fluoride toothpaste, Procter & Gamble started a research program in the early 1940s. In 1950, Procter & Gamble developed a joint research project team headed by Joseph C. Muhler at Indiana University to study new toothpaste with fluoride. In 1955, Procter & Gamble's Crest launched its first clinically proven fluoride-containing toothpaste. On August 1, 1960, the ADA reported that "Crest has been shown to be an effective anticavity (decay preventative) dentifrice that can be of significant value when used in a conscientiously applied program of oral hygiene and regular professional care."

In 1980, the Japanese company, Sangi Co., Ltd., launched APADENT, the world's first remineralizing toothpaste to use a nano-form of hydroxyapatite, the main component of tooth enamel, rather than fluoride, to remineralize areas of mineral loss below the surface of tooth enamel (incipient caries lesions). After many years of laboratory experiments and field trials,[63] its hydroxyapatite ingredient was approved as an active anti-caries agent by the Japanese Ministry of Health in 1993, and given the name Medical Hydroxyapatite to distinguish it from other forms of hydroxyapatite used in toothpaste, such as dental abrasives.

In 2006, BioRepair appeared in Europe with the first European toothpaste containing synthetic hydroxylapatite as an alternative to fluoride for the remineralization and reparation of tooth enamel. The "biomimetic hydroxylapatite" is intended to protect the teeth by creating a new layer of synthetic enamel around the tooth instead of hardening the existing layer with fluoride that chemically changes it into fluorapatite.[64]

Toothpaste tubes

In 1880, Doctor Washington Sheffield of New London, CT manufactured toothpaste into a collapsible tube, Dr. Sheffield's Creme Dentifrice. He had the idea after his son traveled to Paris and saw painters using paint from tubes. In York in 1896, Colgate & Company Dental Cream was packaged in collapsible tubes imitating Sheffield. The original collapsible toothpaste tubes were made of lead.[65][66]

See also

References

  1. American Dental Association Description of Toothpaste"Toothpaste". April 15, 2010.
  2. "Toothpaste overdose". National Library of Medicine. National Institutes of Health. Retrieved February 7, 2014.
  3. Valkenburg C, Slot DE, Bakker EW, Van der Weijden FA (December 2016). "Does dentifrice use help to remove plaque? A systematic review". Journal of Clinical Periodontology. 43 (12): 1050–1058. doi:10.1111/jcpe.12615. PMID 27513809.
  4. Aspinall, Sam R.; Parker, Jane K.; Khutoryanskiy, Vitaliy V. (April 1, 2021). "Oral care product formulations, properties and challenges". Colloids and Surfaces B: Biointerfaces. 200: 111567. doi:10.1016/j.colsurfb.2021.111567. ISSN 0927-7765.
  5. Hujoel PP (March 2019). "Historical perspectives on advertising and the meme that personal oral hygiene prevents dental caries". Gerodontology. 36 (1): 36–44. doi:10.1111/ger.12374. PMID 30318791.
  6. Weinert W (2005). "Oral Hygiene Products". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a18_209. ISBN 3527306730.
  7. Aspinall, Sam R.; Parker, Jane K.; Khutoryanskiy, Vitaliy V. (April 1, 2021). "Oral care product formulations, properties and challenges". Colloids and Surfaces B: Biointerfaces. 200: 111567. doi:10.1016/j.colsurfb.2021.111567. ISSN 0927-7765.
  8. "Oral care product formulations, properties and challenges". Colloids and Surfaces B: Biointerfaces. 200: 111567. April 1, 2021. doi:10.1016/j.colsurfb.2021.111567. ISSN 0927-7765.
  9. Nevitt GA, Witter DH, Bowman WD (September 1958). "Topical applications of sodium fluoride and stannous fluoride". Public Health Reports. 73 (9): 847–50. doi:10.2307/4590256. JSTOR 4590256. PMC 1951625. PMID 13579125.
  10. Perlich MA, Bacca LA, Bollmer BW, Lanzalaco AC, McClanahan SF, Sewak LK, Beiswanger BB, Eichold WA, Hull JR, Jackson RD (1995). "The clinical effect of a stabilized stannous fluoride dentifrice on plaque formation, gingivitis and gingival bleeding: a six-month study". The Journal of Clinical Dentistry. 6 Spec No (Special Issue): 54–8. PMID 8593194.
  11. "Fluoride toothpastes of different strengths for preventing tooth decay". www.cochrane.org. Retrieved March 7, 2020.
  12. Walsh T, Worthington HV, Glenny AM, Marinho VC, Jeroncic A (March 2019). "Fluoride toothpastes of different concentrations for preventing dental caries". The Cochrane Database of Systematic Reviews. 3: CD007868. doi:10.1002/14651858.CD007868.pub3. PMC 6398117. PMID 30829399.
  13. Ekstrand KR (April 22, 2016). "High Fluoride Dentifrices for Elderly and Vulnerable Adults: Does It Work and if So, Then Why?". Caries Research. 50 Suppl 1 (1): 15–21. doi:10.1159/000443021. PMID 27101401.
  14. Commissioner, Office of the (April 17, 2010). "Triclosan: What Consumers Should Know". FDA.
  15. Gunsolley JC (December 2006). "A meta-analysis of six-month studies of antiplaque and antigingivitis agents". Journal of the American Dental Association. 137 (12): 1649–57. doi:10.14219/jada.archive.2006.0110. PMID 17138709. S2CID 9347082. Seventeen studies support the antiplaque, antigingivitis effects of dentifrices containing 0.30 percent triclosan, 2.0 percent Gantrez copolymer.
  16. Riley P, Lamont T (December 2013). Riley P (ed.). "Triclosan/copolymer containing toothpastes for oral health". The Cochrane Database of Systematic Reviews (12): CD010514. doi:10.1002/14651858.CD010514.pub2. PMC 6775959. PMID 24310847.
  17. Brookes, Zoë L.S.; Bescos, Raul; Belfield, Louise A.; Ali, Kamran; Roberts, Anthony (December 2020). "Current uses of chlorhexidine for management of oral disease: a narrative review". Journal of Dentistry. 103: 103497. doi:10.1016/j.jdent.2020.103497. PMC 7567658. PMID 33075450.
  18. Vranić, E; Lacević, A; Mehmedagić, A; Uzunović, A (October 2004). "Formulation ingredients for toothpastes and mouthwashes". Bosnian Journal of Basic Medical Sciences. 4 (4): 51–8. doi:10.17305/bjbms.2004.3362. PMC 7245492. PMID 15628997.
  19. Janakiram, Chandrashekar; Venkitachalam, Ramanarayanan; Fontelo, Paul; Iafolla, Timothy J.; Dye, Bruce A. (December 2020). "Effectiveness of herbal oral care products in reducing dental plaque & gingivitis – a systematic review and meta-analysis". BMC Complementary Medicine and Therapies. 20 (1): 43. doi:10.1186/s12906-020-2812-1. PMC 7076867. PMID 32046707.
  20. "Hinokitiol | 499-44-5". www.chemicalbook.com.
  21. Chandrashekar Janakiram; Ramanarayanan Venkitachalam; Paul Fontelo; Timothy J. Iafolla; Bruce A. Dye (2020). "Effectiveness of herbal oral care products in reducing dental plaque & gingivitis – a systematic review and meta-analysis". BMC Complement Med Ther. 20 (1): 43. doi:10.1186/s12906-020-2812-1. OCLC 8531076494. PMC 7076867. PMID 32046707.
  22. Calcium Phosphate Technologies from. dentist.net. Retrieved on April 4, 2013.
  23. Simon Quellen Field "Why There's Antifreeze in Your Toothpaste: The Chemistry of Household Ingredients" 2008, Chicago Review Press. ISBN 1-55652-697-0
  24. Yang ZY, Wang F, Lu K, Li YH, Zhou Z (January 7, 2016). "Arginine-containing desensitizing toothpaste for the treatment of dentin hypersensitivity: a meta-analysis". Clinical, Cosmetic and Investigational Dentistry. 8: 1–14. doi:10.2147/CCIDE.S95660. PMC 4708190. PMID 26793006.
  25. Hu ML, Zheng G, Zhang YD, Yan X, Li XC, Lin H (August 2018). "Effect of desensitizing toothpastes on dentine hypersensitivity: A systematic review and meta-analysis". Journal of Dentistry. 75: 12–21. doi:10.1016/j.jdent.2018.05.012. PMID 29787782.
  26. Hall C, Mason S, Cooke J (May 2017). "Exploratory randomised controlled clinical study to evaluate the comparative efficacy of two occluding toothpastes - a 5% calcium sodium phosphosilicate toothpaste and an 8% arginine/calcium carbonate toothpaste - for the longer-term relief of dentine hypersensitivity". Journal of Dentistry. 60: 36–43. doi:10.1016/j.jdent.2017.02.009. PMID 28219674.
  27. Epstein JB, Emerton S, Le ND, Stevenson-Moore P (March 1999). "A double-blind crossover trial of Oral Balance gel and Biotene toothpaste versus placebo in patients with xerostomia following radiation therapy". Oral Oncology. 35 (2): 132–7. doi:10.1016/S1368-8375(98)00109-2. PMID 10435146.
  28. James P, Worthington HV, Parnell C, Harding M, Lamont T, Cheung A, Whelton H, Riley P (March 2017). "Chlorhexidine mouthrinse as an adjunctive treatment for gingival health". The Cochrane Database of Systematic Reviews. 3: CD008676. doi:10.1002/14651858.CD008676.pub2. PMC 6464488. PMID 28362061.
  29. Slot DE, Berchier CE, Addy M, Van der Velden U, Van der Weijden GA (February 2014). "The efficacy of chlorhexidine dentifrice or gel on plaque, clinical parameters of gingival inflammation and tooth discoloration: a systematic review". International Journal of Dental Hygiene. 12 (1): 25–35. doi:10.1111/idh.12050. PMID 24034716.
  30. Riley P, Moore D, Ahmed F, Sharif MO, Worthington HV (March 2015). "Xylitol-containing products for preventing dental caries in children and adults". The Cochrane Database of Systematic Reviews (3): CD010743. doi:10.1002/14651858.CD010743.pub2. PMID 25809586.
  31. Canedy D (March 24, 1998). "Toothpaste a Hazard? Just Ask the F.D.A". New York Times. Retrieved December 21, 2008.
  32. Delivering Better Oral Health: An evidence-based toolkit for prevention. NHS. UK, 2007.
  33. Roos J, Dumolard A, Bourget S, Grange L, Rousseau A, Gaudin P, Calop J, Juvin R (November 2005). "[Osteofluorosis caused by excess use of toothpaste]". Presse Médicale. 34 (20 Pt 1): 1518–20. doi:10.1016/S0755-4982(05)84216-2. PMID 16301964.
  34. Kidd E, Fejerskov O (2016). Essentials of Dental Caries. Oxford University Press. p. 97. ISBN 978-0-19-873826-8.
  35. "Tainted toothpaste across the world", New York Times, September 30, 2007.
  36. Bogdanich W (October 1, 2007). "The Everyman Who Exposed Tainted Toothpaste". New York Times.
  37. Rule KL, Ebbett VR, Vikesland PJ (May 2005). "Formation of chloroform and chlorinated organics by free-chlorine-mediated oxidation of triclosan". Environmental Science & Technology. 39 (9): 3176–85. Bibcode:2005EnST...39.3176R. doi:10.1021/es048943+. PMID 15926568.
  38. Mukherjee K (September 4, 2010). "FDA Reviewing Triclosan, an Antibacterial Agent Found in Soap". Retrieved October 27, 2010.
  39. Fruijtier-Pölloth C (October 2005). "Safety assessment on polyethylene glycols (PEGs) and their derivatives as used in cosmetic products". Toxicology. 214 (1–2): 1–38. doi:10.1016/j.tox.2005.06.001. PMID 16011869.
  40. Wenande E, Garvey LH (July 2016). "Immediate-type hypersensitivity to polyethylene glycols: a review". Clinical and Experimental Allergy. 46 (7): 907–22. doi:10.1111/cea.12760. PMID 27196817. S2CID 1247758.
  41. "Tartar Fighting Toothpastes & Toxic Reactions". toxictoothpaste.org. Archived from the original on April 23, 2012.
  42. Canker Sores Archived February 8, 2006, at the Wayback Machine. Dentalgentlecare.com. Retrieved on April 4, 2013.
  43. Herlofson BB, Barkvoll P (June 1996). "The effect of two toothpaste detergents on the frequency of recurrent aphthous ulcers". Acta Odontologica Scandinavica. 54 (3): 150–3. doi:10.3109/00016359609003515. PMID 8811135.
  44. Nikiforuk, Gordon (1985). "5 Fluoride Dentifrices and Fluoride Rinses". Understanding dental caries. prevention: basic and clinical aspects. Basel: Karger. pp. 87–112. doi:10.1159/000409915. ISBN 978-3-8055-3905-0.
  45. Barkvoll P, Rølla G (November 1994). "Triclosan protects the skin against dermatitis caused by sodium lauryl sulphate exposure". Journal of Clinical Periodontology. 21 (10): 717–9. doi:10.1111/j.1600-051x.1994.tb00792.x. PMID 7852618.
  46. DeSimone JA, Heck GL, Bartoshuk LM (1980). "Surface active taste modifiers: a comparison of the physical and psychophysical properties of gymnemic acid and sodium lauryl sulfate". Chemical Senses. 5 (4): 317–330. doi:10.1093/chemse/5.4.317.
  47. "Tooth Whitening".
  48. Mayo Clinic Staff. "Whitening toothpaste: Does it actually whiten teeth?". Mayo Clinic. Archived from the original on May 3, 2008.CS1 maint: bot: original URL status unknown (link)
  49. Soeteman GD, Valkenburg C, Van der Weijden GA, Van Loveren C, Bakker E, Slot DE (February 2018). "Whitening dentifrice and tooth surface discoloration-a systematic review and meta-analysis". International Journal of Dental Hygiene. 16 (1): 24–35. doi:10.1111/idh.12289. PMID 28573755. S2CID 3848563.
  50. "Are yellow teeth stronger?". sciencefocus.com.
  51. Dhingra K (April 2014). "Aloe vera herbal dentifrices for plaque and gingivitis control: a systematic review". Oral Diseases. 20 (3): 254–67. doi:10.1111/odi.12113. PMID 23607360.
  52. Chandra N (September 11, 2011). "Toothpastes contain cancer causing nicotine, finds study". Mail Today. indiatoday.in. Retrieved August 22, 2014.
  53. Brooks JK, Bashirelahi N, Reynolds MA (September 2017). "Charcoal and charcoal-based dentifrices: A literature review". Journal of the American Dental Association. 148 (9): 661–670. doi:10.1016/j.adaj.2017.05.001. PMID 28599961.
  54. "Colgate, Glaxo settle toothpaste 'nurdle' lawsuit". Market News. Reuters. November 8, 1911.
  55. The History of Toothpaste and Toothbrushes. Bbc.co.uk. Retrieved on April 4, 2013.
  56. Lebling RW (July–August 2003). "Flight of the Blackbird". Saudi Aramco World: 24–33. Retrieved January 28, 2008.
  57. Toby S (2009). Japanese fashion : a cultural history (English ed.). Oxford: Berg. ISBN 978-0857851451. OCLC 719377495.
  58. "Other ingredients in toothpaste". Archived from the original on October 18, 2007. Retrieved December 23, 2007.CS1 maint: bot: original URL status unknown (link)
  59. Segrave K (January 27, 2010). America Brushes Up: The Use and Marketing of Toothpaste and Toothbrushes in the Twentieth Century. McFarland. p. 35. ISBN 978-0-7864-5684-0.
  60. Johnson TB (March 1942). "Obituary on Harry Ward Foote". Science. 95 (2462): 241–2. doi:10.1126/science.95.2462.241. PMID 17774149.
  61. "Kolynos Toothpaste and Nalgiri Cosmetics – A curious blend of Greek and Hindu". Collecting Vintage Compacts.
  62. Early dental fluoride preparations (dentifrice, mouthwash, tablets, etc.). Fluoride-history.de. Retrieved on April 4, 2013.
  63. Kani T, Kani M, Isozaki A, Shintani H, Ohashi T, Tokumoto T (1989). "Effect to Apatite-containing Dentifrices on Dental Caries in School Children". Journal of Dental Health. 39: 104–109. doi:10.5834/jdh.39.104.
  64. An enamel toothpaste that repairs teeth. BioRepair (January 18, 2013). Retrieved on April 4, 2013.
  65. Schlosser J (December 20, 2005). "Get the lead out didn't always mean for soldiers to speed up during World War II. It meant removing lead from toothpaste tubes to make bullets". Architecture Antiquity Artifacts. Archived from the original on October 13, 2008.
  66. Cooper HS, Gill B (August 6, 1960). "The Talk of the Town: Collapsible". The New Yorker.

Further reading

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.